

CIN: U70109WB2006PLC111457 E-mail: dhariwalinfrastructure@rpsg.in

Date: 21/11/2024

Ref. No.: DIL/HEA/MOEF /24-25/00078

To,
The APCCF (C),
Ministry of Environment and Forest, Climate Change,
Regional Office (WCZ) Ground Floor,
East Wing, New Secretariat Building,
Civil Line,
Nagpur – 440001 (MH).

Sub.: Half Yearly Compliance Report of the Environmental Clearance for the period of 1st April 2024 to 30th September 2024.

Ref.: MoEF, Govt. of India Environmental Clearance No. J-13011/10/2009-IA. II (T) dated 4th December 2009.

Dear Sir,

We are operating 2 x 300 MW Thermal Power Plant M/s Dhariwal Infrastructure Limited at Plot No. C-6, C-7& C-8, MIDC, Tadali Industrial Area, Chandrapur (M.S.). We are enclosing herewith point wise compliance report of conditions stipulated in the Environmental Clearance along with requisite annexures (In soft), granted vide above referred letter for the period of 1st April 2024 to 30th September 2024.

We are making our sincere efforts for creating cleaner and greener environment with-in and outside company premises.

Thanking you,

Yours faithfully,

For DHARIWAL INFRASTRUCTURE LTD.

Authorized Signatory

Encl.: As above

CC:

1. The Member Secretary, Central Pollution Control board, Parivesh Bhawan, East Arjun Nagar, Delhi – 110032.

2. The Regional Director, Central Pollution Control board, Pune, Maharashtra.

3. The Member Secretary, Maharashtra Pollution Control board, Kalpataru Point, 4th Floor, Sion (E'), Mumbai – 400022.

4. The Regional Officer, Maharashtra Pollution Control board, 1st Floor, Udyog Bhawan, Chandrapur - 442401, Maharashtra.

Environmental Compliance Report for the Period From 1st April, 2024 to 30th September, 2024.

Of

DHARIWAL INFRASTRUCTURE LTD.

Plot No. C-6, C-7 & C-8, Tadali Industrial Area, MIDC, Village – Tadali, Dist. - Chandrapur

Submitted to

Ministry of Environment, Forest and Climate Change Regional Office (WCZ), Ground Floor, East Wing New Secretariat Building Civil Line, Nagpur – 440001 (MH)

1.0 PREAMBLE

Dhariwal Infrastructure Limited has been granted Environmental Clearance for 2 x 300 MW Thermal Power Plant vide MoEF&CC EC No. J-13011/10/2009-IA. II (T) dated 04-12-2009.

Unit -1 of Thermal Power Plant has been installed and commissioned in February 2014 and Unit -2 in August 2014 respectively.

The MPCB Consent to Operate is granted to both the units for the period valid up to 31.12.2025.

All the Environmental Protection & Conservation works including air pollution control systems, effluent treatment plant, sewage treatment plant, rain water harvesting, greenbelt development activities etc. are completed. The present compliance status is given below:

2.0 COMPLIANCE STATUS

The conditions stipulated in Environmental Clearance are followed scrupulously. Compliance is reported hereunder for the period from 1st April, 2024 to 30th September, 2024 in serial order of Environmental Clearance Letter as delineated below.

Sr. No.	Environment Clearance Conditions	Complied, radial wells are constructed 500 meters away from the nearest				
(i)	No further expansion shall be permitted for this power plant in view of the uncertainty of water in lean season.					
(ii)	The two radial wells shall be constructed maintaining a distance of at least 450 m between them and at least 500 m from the nearest habitations/village boundary.					
(iii)	Water from the radial well(s) shall be utilized only for extreme necessity during lean season and shall be kept only as standby arrangement during lean season.	Water from the radial wells will be utilized only for extreme necessity during lean seasons and kept only as a standby arrangement during lean seasons.				
(iv)	Hydro-geological study of the area shall be reviewed annually and results submitted to the Ministry and concerned agency in the State Govt. In case adverse impact on ground water quantity and quality is observed, immediate mitigating steps to contain any adverse impact on ground water shall be undertaken.	regularly reviewed. Ground water level and Ground water quality in the study area is also regularly analyzed. Report is attached as Annexure-1 .				
(v)	A Two Bi-Flue stack of 275 m height shall be provided with continuous online monitoring equipment for SOx, NOx and PM. Exit velocity of flue gases shall not be less than 25 m/sec. Mercury	Continuous online monitoring equipments are functional at 275 meter stack on both the flue cans attached to Boiler 1 & Boiler 2 and monitoring of PM, SOx & NOx is being done by				

	emissions from stack shall also be monitored on periodic basis.	NABL Accredited and CPCB Recognized laboratory. The Exit velocity of flue gases is maintained at more than 25 m/s in both the units. Mercury emissions from both the unit stack are also being monitored on periodic basis by NABL Accredited and CPCB Recognized laboratory. Report is enclosed as Annexure-2.			
(vi)	High Efficiency Electrostatic Precipitators (ESPs) shall be installed to ensure that particulate emission does not exceed 50 mg/Nm ³ .	Precipitator (ESP) for unit 1 & 2 ar commissioned and is in operation. Both ESPs are designed to ensure that particulate emissions do not exceed 5 mg/Nm³. The analysis reports by NABI Accredited and CPCB Recognized laboratory of stack emission monitoring for both units are enclosed at Annexure-2.			
(vii)	Adequate dust extraction system such as cyclones/ bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	Complied. Adequate dust extraction and dust suppression systems are provided in the CHP and AHP. Water sprinklers and tanker sprinklers are utilized as needed.			
(viii)	Utilization of 100% Fly Ash generated shall be made from 4 th year of operation of the plant. Status of implementation shall be reported to the Regional Office of the Ministry from time to time.	Complied. 100% of the fly ash generated is utilized by nearby cement plants and brick manufacturers for cement and brick production. Ash generation and utilization details for the period from April 24 to September 24 are enclosed as Annexure-3 .			
(ix)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided. 100% fly ash utilization shall be ensured from 4 th year onwards, Unutilized fly ash shall be disposed off in the ash pond in the form of slurry form. Mercury and other heavy metals (As, Hg, Cr, Pb etc.) will be monitored in the bottom ash as also in the effluents emanating from the existing ash pond. No ash shall be disposed off in low lying area.	Complied. Two fly ash silos, each with a capacity of 1600 MT, have been constructed to handle dry fly ash with a 24-hour storage capacity. Mercury and other heavy metals are monitored in bottom ash and ash pond effluent. Heavy metal analysis report is enclosed as Annexure-4 . Condition for no ash disposal in low lying area is omitted vide MoEF& CC (IA Division) Office Memorandum dated 28 August 2019.			

(x)	Ash pond shall be lined with HDP/LDP lining or any other suitable impermeable media such that no leachate takes place at any point of time. Adequate safety measures shall also be implemented to protect the ash dyke from getting breached.	Complied. The ash pond is lined with an LDPE lining to prevent any leachate. Adequate safety measures, such as proper sloping, boulder pitching, greenbelt development, and adequate bund thickness, are implemented to protect the ash dyke from breaches				
(xi)	For disposal of Bottom Ash in abandoned mines (if proposed to be undertaken) it shall be ensured that the bottom and sides of the mined out areas are adequately lined with clay before Bottom Ash is filled up. The project proponent shall inform the State Pollution Control Board well in advance before undertaking the activity.	Noted, will be complied.				
(xii)	As par revised EC dated 09/09/2010 closed cycle cooling system with Induced draft cooling towers shall be provided. The Effluents shall be treated as per the prescribed norms.	Induced draft cooling towers is provided. The effluents are treated as				
(xiii)	The treated effluents conforming to the prescribed standards only shall be discharged. Arrangements shall be made that effluents and storm water do not get mixed.	Our operating facility is based on ZLD (zero liquid discharge). Treated effluent that complies with the prescribed				
(xiv)	A sewage treatment plant shall be provided and the treated sewage shall be used for raising greenbelt/plantation.	Complied. Sewage treatment plant of				
(xv)	Rainwater harvesting should be adopted Central Groundwater Authority/ Board shall be consulted for finalization of appropriate rainwater harvesting technology within a period of three months from the date of clearance and details shall be furnished.	A Rainwater harvesting pond has been constructed in which rainwater is regularly collected via natural drains. We have permission from Central Ground Water Board for implementation of rain water harvesting.				

(xvi)	Adequate safety measures shall be provided in the plant area to check/minimize spontaneous fires in coal yard, especially during summer season. Copy of these measures with full details along with location plant layout shall be submitted to the Ministry as well as to the Regional Office of the Ministry.	Provision of Adequate safety measures in the plant area to check/minimize spontaneous fires in coal yard is provided. Dedicated fire hydrant system comprised of fire monitors and rain guns have been provided around coal stock yard.			
(xvii)	Storage facilities for auxiliary liquid fuel such as LDO and/ HFO/LSHS shall be made in the plant area in consultation with Department of Explosives, Nagpur. Sulphur content in the liquid fuel will not exceed 0.5%. Disaster Management Plan shall be prepared to meet any eventuality in case of an accident taking place due to storage of oil.	Complied. License from Petroleum & Explosives Safety Organization-PESO, (earlier known as Department of Explosives) for storage facility of auxiliary liquids fuel is granted. Sulphur content is maintained within the permissible range of 0.5%. Disaster Management Plan is prepared and in place and approved by appropriate authority. PESO license is enclosed as Annexure-5 .			
(xviii)	Regular monitoring of ground water level shall be carried out by establishing a network of existing wells and constructing new piezometers. Monitoring around the ash pond area shall be carried out particularly for heavy metals (Hg, Cr, As, Pb) and records maintained and submitted to the Regional Office of this Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	levels and quality within our industry premises and the surrounding ash pondarea. Reports are enclosed as Annexure-1 .			
(xix)	Green Belt consisting of 3 tiers of plantations of native species around plant and at least 100 m width shall be raised. Wherever 100 m width is not feasible a 50 m width shall be raised and adequate justification shall be submitted to the Ministry. Tree density shall not less than 2500 per ha with survival rate not less than 70 %.	As on date about 2,07,349 trees have been planted with a survival rate greater than 70%. The major existing trees are Acacia, Imli, Karanj, Mahaneem, Neem, Peltophorum, Sheesham and Cassia, Casuarina, Eucalyptus etc. The other existing trees are Apta, Amla, Anjeer, Areca Palm, Aerial Palm, Arjun, Ashoka, Bargad, Badam, Banana, Bougainvillea, Chikku, Coconut, Flower tree, Ficus benjamina, Golden Bamboo, Green Bamboo, Gulmohar, Jambul Jambul, Jaswant, Kadam, Kanher, Kawath, Mahogany, Mango, Mogra, Mosambi, Nimbu,			

(xx)	First Aid and sanitation arrangements	Pipal, Rain Tree, Red Rose, Royal Palm, Ornamental Plants, Saru, Simal, Spindle Palm, Silver Oak, Swastik, Vel (Kourav & Pandava), Vidya, X-mas tree, Yellow Bell, Bakul, Papaya, Sitaphal, Bel, Shahtoot, Anar, Shevga, Amrud, Ber, Khair etc. (Photographs attached as Annexure-6). Complied during construction phase.
(AA)	shall be made for the drivers and other contract workers during construction phase.	Complied during construction phase.
(xxi)	Noise level emanating from turbines shall be so controlled such that the noise in the work zone shall be limited to 75 dB(A). For people working in the high noise area, requisite personal protective equipment like earplugs/ear muffs etc. shall be provided. Workers engaged in noisy areas such as turbine area, air compressors etc. shall be periodically examined to maintain audiometric record and for treatment of any hearing loss including shifting to non-noisy/less noisy areas.	We are regularly monitoring work place noise level at 25 locations including turbine, air compressors on quarterly basis. Norms for Work zone Noise level is 85 dB(A) and for ambient noise level, it is 75 dB(A). The results are well within the limit. Noise level emanating from turbines is controlled such that the noise in the work zone is well within limit. For people working in the high noise area, requisite personal protective equipment like earplugs/ear muffs etc. are provided. Workers engaged in noisy areas are periodically examined & we are maintaining audiometric record and for treatment for any hearing loss including shifting to suitable areas is done. The work zone noise results are enclosed herewith as Annexure-7(A) & 7(B).
(xxii)	Regular monitoring of ground level concentration of SO ₂ , NOx, RSPM (PM ₁₀ /PM _{2.5}) and Hg shall be carried out in the impact zone and records maintained. If at any stage these levels are found to exceed the prescribed limits, necessary control measures shall be provided immediately. The location of the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the Regional Office of the Ministry. The data shall also be put on the website of the company.	Complied. Regular ambient air quality monitoring is conducted at eight locations by an NABL-accredited and CPCB-recognized laboratory and reports for the compliance period are enclosed as Annexure-8 and being submitted regularly.

A good action plan for R&R (if applicable) with package for the project affected persons be submitted and implemented as per prevalent R&R policy within three months form the date of issue of this letter.

(xxiv) An amount of Rs. 12.0 Crores shall be

We are located in Maharashtra Industrial Development Corporation (MIDC) area; hence R & R is not applicable to us.

An amount of Rs. 12.0 Crores shall be earmarked as one time capital cost for CSR programme. Subsequently a recurring expenditure of Rs. 3.0 Crore per annum shall be earmarked as recurring expenditure for CSR activities. Details of the activities to be undertaken shall be submitted within month along with road map for implementation.

Road is worked for map out implementation of CSR activities. A partnership along with Zila Parishad, Chandrapur, and local NGO's for improving Health & Sanitation, Education, Women empowerment, Skill development, Agriculture Programs, Rural development in Fourteen Gram Panchayats is done and further work is under progress. The implementation of following CSR activities undertaken in the aforesaid period.

- 1. Organized Educational program in nearby villages to ensure access to quality education for 460 children aged 6 to 14 years, while fostering their overall development through a diverse range of extracurricular activities.
- 2. Motivating and Enabling 100 women for self-employment through Self-Help Groups (SHGs) and provide them with the capital to establish micro-enterprises.
- 3. Promote and strengthen efficient and effective management of agricultural production and productivity through management of farms in order to ensure economic and environmental sustainability of farmers.
- 4. Enhanced the general quality of life areas by motivating rural communities Panchayat Raj and Institutions through awareness creation and health education. Organized health check-up camps across various villages.
- 5. Empowering 300 adolescent girls

through self-development initiatives, improving their nutrition and health status, and promoting awareness on health, menstrual hygiene, nutrition, sexual health, and the enhancement of home-based skills, vocational training, and life skills.

- **6.** Skill development training for youth is being imparted regularly.
- 7. To bring about an improvement in the general quality of life in the rural areas by the infrastructure development such as, cement benches, body freezer, development of playground, shed for multifunctional events, Donation of sound system etc. Details of CSR activities are attached as **Annexure-9**.

As part of CSR programme the company shall conduct need based assessment for the nearby villages to study economic measures with action plan which can help in upliftment of poor section of society. Income generating projects consistent with the traditional skills of the people besides development of fodder farm, fruit bearing orchards, vocational training etc. can form a part of such programme. Company shall provide separate budget for community development activities and income generating programs. This will be in addition to vocational training for individuals imparted to take up self employment and jobs.

A need based survey had been carried out by Social Action for Rural Development (SARDA) agency in nearby areas to assess the social and economic status of the people based on which a comprehensive document is prepared to deal with need based CSR activities. The implementation of following CSR activities undertaken in the aforesaid period.

- 1. Training on Health & Sanitation in nearby ten villages. Supply of Sanitary amenities to the locals.
- 2. Training to Adolescent girls.
- 3. Agriculture Projects in nearby villages.
- 4. Educational Programs in nearby villages.
- 5. Women Empowerment Program.
- 6. Skill development training for youth is being imparted regularly.
- 7. Rural Development Program.
 Details of CSR activities are attached as
 Annexure-9.

(xxv)

	B			
(xxvi)	Provision shall be made for the housing of construction labors within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. The housing may be in this form of temporary structures to be removed after the completion of the project.	Complied during construction phase. Demolition of temporary structures of construction phase is under progress.		
(xxvii)	The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned within seven days from the date of this clearance letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the State Pollution Control Board/Committee and may also be seen at Website of the Ministry of Environment and Forests at http://envfor.nic.in.			
(xxviii)	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parisad / Municipal Corporation, urban local body and the local NGO, if any, from whom suggestions/representations, if any, received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.	Complied. Copy of DIL Environment Clearance is available on the company website www.dilenergy.co.in		
(xxix)	A separate Environment Management Cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.	Environment Management Cell comprising of qualified staff with adequate experience and knowledge is in place to cater to the environmental responsibilities & needs.		
(xxx)	The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB The criteria pollutant levels namely; SPM, RSPM (PM ₁₀ /PM _{2.5}) SO ₂ NOx (ambient	Complied. Status of compliance is being uploaded on company's website, www.dilenergy.co.in. EC compliance reports are being sent to designate Regulatory Bodies regularly. Criteria pollutant levels are displayed at the main gate of the company for the general public.		

	levels as well as stack emissions) shall be displayed at a convenient location near the main gate of the company in the public domain.		
(xxxi)	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well by email) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.	Half yearly compliance reports ar regularly being submitted since beginning to the, Regional office of MoEF&CO Nagpur. CPCB, Delhi MPCB Chandrapur-Regional Office & Mumbai- Head Office The half-yearly EC compliance report is also uploaded through the Parivest portal developed by the MoEF&CC.	
(xxxii)	The environment statement for each financial /year ending 31 st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules. 1986, as amended subsequently, shall also be put on the website off the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of the Ministry by email.	Yes, The annual Environment Statement in Form-V for financial year ending 31 st March, 2024 has been submitted to MPCB. Acknowledged letter copy is enclosed herewith as Annexure -10 . Copy of the same has been also been uploaded on company's website, i.e. www.dilenergy.co.in.	
(xxxiii)	The project proponent shall submit six monthly reports on the status of the implementation of the stipulated environmental safeguards to the Ministry of Environment and Forests, its Regional Office, Central Pollution Control Board and State Pollution Control Board. The project proponent shall upload the status of compliance of the environment of the environmental clearance conditions on their website and update the same periodically and simultaneously send the same by e-mail to the Regional Office, Ministry of Environment and Forests.	Complied. Six monthly compliance reports are regularly submitted about the status of the implementation of the stipulated environmental safeguards to the Ministry of Environment and Forests Regional office, Central Pollution Control Board and Maharashtra Pollution Control Board. Copy of the same has been uploaded on company's website, www.dilenergy.co.in.	

(xxxiv)	Regional Office of the Ministry of Environment & Forests will monitor the implementation of the stipulated conditions. A complete set of documents including Environmental Impact Assessment Report and Environment Management Plan along with the additional information submitted from time to time shall be forwarded to the Regional Office for their use during monitoring. Project proponent will upload the compliance status in their website and up-date the same from time to time at least six monthly basis. Criteria pollutants levels including NOx (from stack & ambient air) shall be displayed at the main gate of the power plant.	been uploaded on company's website www.dilenergy.co.in. Criteria pollutant levels are displayed at the main gate of the power plant.	
(xxxv)	Separate funds shall be allocated for implementation of environmental protection measures along with itemwise break-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should be reported to the Ministry.	Yes, separate funds are allocated for implementation of environmental protection measures. Total expenses on environmental control measures from April 1, 2024, to September 30, 2024, amounted to ₹277.14 lakhs.	
(xxxvi)	The project authorities shall inform the Regional Office as well as the Ministry regarding the date of financial closure and final approval of the project by the concerned authorities and the dates of start of land development work and commissioning of plant.	COD for Unit #1 was 11 th February 2014 & COD for Unit #2 was 2 th August, 2014. Information has been given to the authorities.	
(xxxvii)	Full cooperation shall be extended to the Scientists/Officers from the Ministry/Regional Office of the Ministry at Bhopal/CPCB/SPCB who would be monitoring the compliance of environmental status.	Noted & Agreed.	

SL	Additional Conditions	Compliance Status				
No	(As per MoEF & CC Notification No.	Compilance Status				
	S.O. 1561(E), dated 21.05.2020)					
(1)	Setting Up Technology Solution for emission norms:					
	(i) Compliance of specified emission	Being Complied. ESP's are designed				
	norms for Particulate Matter, as per extant	to ensure that particulate emission does				
	notifications and instructions of Central	not exceed 50 mg/Nm3.				
	Pollution Control Board, issued from time					
	to time.					
	(ii) In case of washries, Middling and	Not Applicable to us.				
	rejects to be utilized in FBC (Fluidized	11				
	Bed Combustion) technology based					
	thermal power plants. Washery to have					
	linkage for middling and rejects in					
	Fluidized Bed Combustion plants.					
	(i) The thermal powers plants shall	Plant management is focused on				
	comply with conditions, as notified in the	effective utilization of Ash generated				
	Fly Ash notification issued from time to	at site. For achieving 100% dry Ash				
		,				
	time, without being entitled to additional	utilization, Ash generated is being				
	capacity of fly ash pond (for existing	utilized in nearby cement plants and				
	power generation capacity) on ground of	Brick Manufacturers and for making				
	switching from washed coal to unwashed	other value-added products.				
	coal.					
	(ii) Appropriate Technology solutions	•Entire Ash is handled in dry form				
	shall be applied to optimize water	without requiring water except				
	consumption for Ash management;	furnace Ash				
		•Furnace Ash or Bottom Ash is				
		transported as slurry from bottom				
		Ash hopper to the Ash pond. After				
		the process of decantation, water is				
		recycled and reused again in				
		transportation of Ash slurry.				
	(iii) The segregation of ash may be done	High efficiency ESPs have been				
	at the Electro-Static Precipitator stage, if	installed and entire quantity of Ash				
	required, based on site specific conditions,	collected from ESP's is utilized as per				
	to ensure maximum utilization of fly ash;	available regulatory guideline.				
	(iv) Subject to 2(i) above, the thermal	Noted.				
	power plants to dispose fly ash in					
	abandoned or working mines (to be					
	facilitated by mine owner) with					
	environmental safeguards.					
(3)	Transportation:	I				
` ′		Cool transportation is being dans				
	(i) Coal transportation may be undertaken	Coal transportation is being done				
	by covered Railway wagon (railway	through Rail.				
	wagons covered by tarpaulin or other					
	means) and/or covered conveyer beyond					
	the mine area. However, till such time	However, transportation of coal by				
	enabling Rail transport/conveyer	road is carried out by covered truck				

infrastructure is not available, road	only as and when needed.
transportation may be undertaken in	
trucks, covered by tarpaulin or other	
means.	
(ii) It shall be ensured by the thermal	
power plant that	
a. Rail siding facility or conveyor facility	There is a railway siding facility within
is set up at or near the power plant, for	the plant premises.
transportation by rail or conveyor; and	
b. If transportation by rail or conveyor	
facility is not available, ensure that the	Noted,
coal is transported out from the Delivery	Being complied.
Point of the respective mine in covered	
trucks (by tarpaulin or other means), or	
any mechanized closed trucks by road.	

$\underline{Annexure-1}$

GROUND WATER LEVEL & QUALITY STATUS

May-2024

Village Name	Details of Locations	Field Code No.	Date of Measurement	Water Level below ground level (level in mbmp - magl = mbgl)
Village- Pandharkwada	Dugwell of ShriPandariZitrajiWadai Farm	DIL 1	18-05-2024	6.9
Village- Sonegaon	Gram PanchayatDugwell,Near Hanuman Mandir	DIL 2	18-05-2024	6.3
Village- Yerur	Dugwell of ShriRavindraPandurangjiBalki	DIL 3	18-05-2024	7.25
Village- Wandhari	Borewell Water of Hanuman Mandir	DIL 4	18-05-2024	
Village- Ghodpeth	Dugwell of Shiv Mandir	DIL 5	18-05-2024	3.35
Village- Tadali	GrampanchayatDugwell Near Z.P.Primary School	DIL 6	18-05-2024	6.8
Village- Morwa	Dugwell near Jagnath Baba Mandir	DIL 7	18-05-2024	3.9
Village- Wadha	Intake Well	DIL 8	18-05-2024	8.6
MIDC,Tadali	Near Recovery Pump House-I, PZ-1	DIL 9	18-05-2024	1.4
MIDC,Tadali	Near Recovery Pump House-II, PZ-2	DIL 10	18-05-2024	1.87
MIDC,Tadali	Ash Pond II, PZ-3	DIL 11	18-05-2024	4.35
MIDC,Tadali	Near Railway Crossing of WB-2, PZ-4	DIL 12	18-05-2024	3.28
MIDC,Tadali	Near ETP Security Post, PZ-5	DIL 13	18-05-2024	2.30
MIDC,Tadali	Near AAQMS Cabin-3, PZ-6	DIL 14	18-05-2024	5.80
Village-Sakharwahi	Dugwell Water from ShriRavindraBhagwat Farm	DIL 15	18-05-2024	4.80
	Village- Pandharkwada Village- Sonegaon Village- Yerur Village- Wandhari Village- Ghodpeth Village- Tadali Village- Morwa Village- Wadha MIDC, Tadali	Village- Pandharkwada Village- Sonegaon Village- Yerur Dugwell of ShriRavindraPandurangjiBalki Village- Wandhari Borewell Water of Hanuman Mandir Village- Ghodpeth Dugwell of Shiv Mandir Village- Tadali GrampanchayatDugwell Near Z.P.Primary School Village- Morwa Dugwell near Jagnath Baba Mandir Village- Wadha Intake Well MIDC,Tadali Near Recovery Pump House-I, PZ-1 MIDC,Tadali Near Recovery Pump House-II, PZ-2 MIDC,Tadali Near Railway Crossing of WB-2, PZ-4 MIDC,Tadali Near ETP Security Post, PZ-5 MIDC,Tadali Near AAQMS Cabin-3, PZ-6 Village-Sakharwahi Dugwell Water from	Village- Pandharkwada Village- Sonegaon Gram PanchayatDugwell,Near Hanuman Mandir Village- Yerur Dugwell of ShriRavindraPandurangjiBalki Village- Wandhari Village- Ghodpeth Village- Gram PanchayatDugwell,Near Hanuman Mandir DIL 3 Village- Wandhari Borewell Water of Hanuman Mandir DIL 5 Village- Tadali GrampanchayatDugwell Near Z.P.Primary School Village- Morwa Dugwell near Jagnath Baba Mandir DIL 7 Village- Wadha Intake Well DIL 8 MIDC,Tadali Near Recovery Pump House-I, PZ-1 MIDC,Tadali Near Recovery Pump House-II, PZ-2 DIL 10 MIDC,Tadali Near Railway Crossing of WB-2, PZ-4 DIL 12 MIDC,Tadali Near ETP Security Post, PZ-5 DIL 13 MIDC,Tadali Near AAQMS Cabin-3, PZ-6 DIL 14 Village-Sakharwahi	Village- Pandharkwada Village- Sonegaon Village- Sonegaon Gram PanchayatDugwell,Near Hanuman Mandir Village- Wandhari Village- Wandhari Village- Ghodpeth Village- Tadali Village- Morwa Dugwell near Jagnath Baba Mandir Village- Wandha Village- Wandhari Village- Tadali Village- Tadali Village- Tadali Village- Tadali Village- Morwa Dugwell near Jagnath Baba Mandir Village- Wandha Village- Morwa Dugwell near Jagnath Baba Mandir Village- Wadha Near Recovery Pump House-I, PZ-1 MIDC, Tadali Near Recovery Pump House-II, PZ-2 MIDC, Tadali Near Recovery Pump House-II, PZ-3 MIDC, Tadali Near Railway Crossing of WB-2, PZ-4 MIDC, Tadali Near Railway Crossing of WB-2, PZ-4 MIDC, Tadali Near ETP Security Post, PZ-5 DIL 13 18-05-2024 Village-Sakharwahi Dugwell Water from DIL 15 18-05-2024

August-2024

Sr. No.	Village Name	Details of Locations	Field Code No.	Date of Measurement	Water Level below ground level (level in mbmp - magl = mbgl)
1.	Village- Pandharkwada	Dugwell of ShriPandariZitrajiWadai Farm	DIL 1	21-08-2024	0.9
2.	Village- Sonegaon	Gram PanchayatDugwell,Near Hanuman Mandir	DIL 2	21-08-2024	1.3
3.	Village- Yerur	Dugwell of ShriRavindraPandurangjiBalki	DIL 3	21-08-2024	1.4
4.	Village- Wandhari	Borewell Water of Hanuman Mandir	DIL 4	21-08-2024	2.1
5.	Village- Ghodpeth	Dugwell of Shiv Mandir	DIL 5	21-08-2024	0.8
6.	Village- Tadali	GrampanchayatDugwell Near Z.P.Primary School	DIL 6	21-08-2024	0.8
7.	Village- Morwa	Dugwell near Jagnath Baba Mandir	DIL 7	21-08-2024	1.4
8.	Village- Wadha	Intake Well	DIL 8	21-08-2024	1.1
9.	MIDC,Tadali	Near Recovery Pump House-I, PZ-1	DIL 9	21-08-2024	1.9
10.	MIDC,Tadali	Near Recovery Pump House-II, PZ-2	DIL 10	21-08-2024	1.5
11.	MIDC,Tadali	Ash Pond II, PZ-3	DIL 11	21-08-2024	4.0
12.	MIDC,Tadali	Near Railway Crossing of WB-2, PZ-4	DIL 12	21-08-2024	0.70
13.	MIDC,Tadali	Near ETP Security Post, PZ-5	DIL 13	21-08-2024	4.30
14.	MIDC,Tadali	Near AAQMS Cabin-3, PZ-6	DIL 14	21-08-2024	4.80
15.	Village-Sakharwahi	Dugwell Water from Shri Ravindra Bhagwat Farm	DIL 15	21-08-2024	1.2

			C	oncentration	
				Location	
Sr. No.	Parameters	Dugwell Water, Village- Pandharkawda)	Borewell Water, Village- Sonegaon)	Dugwell Water, Village- Yerur)	Borewell Water, Village- Wandhri
		18-05-2024	18-05-2024	18-05-2024	18-05-2024
1.	Colour	1.0	1.0	5.0	2.0
2.	Odour	Agreeable	Agreeable	Agreeable	Agreeable
3.	pH value	7.04	7.27	7.83	7.84
4.	Taste	Agreeable	Agreeable	Agreeable	Agreeable
5.	Turbidity	0.22	0.24	0.36	0.12
6.	Total Dissolved Solids	824.0	708.0	754.0	648.0
7.	Boron (as B)	0.18	0.13	0.14	0.11
8.	Calcium (as Ca)	115.2	62.4	108.0	70.4
9.	Chloride (as Cl)	130.8	98.4	121.7	101.4
10.	Copper (as Cu)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
11.	Fluoride (as F)	0.28	0.27	0.28	0.59
12.	Iron (as Fe)	0.41	0.24	0.28	0.21
13.	Magnesium (as Mg)	37.9	39.5	15.6	22.4
14.	Manganese (as Mn)	0.04	0.03	0.04	0.03
15.	Sulphate (as SO ₄)	118.4	104.5	108.4	88.2
16.	Total Alkalinity (as CaCO ₃)	252.0	215.3	204.8	199.5
17.	Total Hardness (as CaCO ₃)	444.0	318.0	334.0	268.0
18.	Zinc (as Zn)	0.46	0.27	0.40	0.39
19.	Lead (as Pb)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
20.	Mercury (as Hg)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)
21.	Total Arsenic (as As)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
22.	Total Chromium (as Cr)	0.01	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
23.	Free Residual Chlorine	0.24	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)
24.	Nitrate (as NO ₃)	29.2	21.2	14.9	20.4
	-				-

			Co	oncentration	
			,	Location	
Sr. No.	Parameters	Dugwell Water, Village- Morwa)	Dugwell Water, Village – Ghodpeth)	Dugwell Water, Village – Tadali)	Ground Water from Intake Well near Wadha Village
		18-05-2024	18-05-2024	18-05-2024	18-05-2024
1.	Colour	3.0	1.0	1.0	2.0
2.	Odour	Agreeable	Agreeable	Agreeable	Agreeable
3.	pH value	7.81	7.53	7.58	7.37
4.	Taste	Agreeable	Agreeable	Agreeable	Agreeable
5.	Turbidity	0.19	0.21	0.13	0.19
6.	Total Dissolved Solids	670.0	692.0	734.0	586.0
7.	Boron (as B)	0.12	0.09	0.17	0.08
8.	Calcium (as Ca)	63.2	62.4	95.2	71.2
9.	Chloride (as Cl)	114.6	97.3	148.0	97.3
10.	Copper (as Cu)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
11.	Fluoride (as F)	0.34	0.48	0.34	0.21
12.	Iron (as Fe)	0.39	0.34	0.27	0.16
13.	Magnesium (as Mg)	21.9	36.0	18.5	35.6
14.	Manganese (as Mn)	0.01	0.01	0.03	0.02
15.	Sulphate (as SO ₄)	63.3	108.5	109.1	104.5
16.	Total Alkalinity (as CaCO ₃)	157.5	210.0	178.5	162.8
17.	Total Hardness (as CaCO ₃)	248.0	304.0	314.0	324.0
18.	Zinc (as Zn)	0.24	0.28	0.30	0.20
19.	Lead (as Pb)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
20.	Mercury (as Hg)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)
21.	Total Arsenic (as As)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
22.	Total Chromium (as Cr)	BDL (< 0.01)	BDL (< 0.01)	0.01	BDL (< 0.01)
23.	Free Residual Chlorine	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)
24.	Nitrate (as NO ₃)	13.6	17.1	26.4	10.6

			C	Concentration	
				Location	
Sr. No.	Parameters	Near Recovery Pump House- I,(Ash Pond) PZ- 1	Near Recovery Pump House- II,(Ash Bund) PZ- 2	Ash Pond II, PZ-3	Near Railway Crossing of WB-2, PZ-4
		18-05-2024	18-05-2024	18-05-2024	18-05-2024
1.	Colour	1.0	3.0	3.0	2.0
2.	Odour	Agreeable	Agreeable	Agreeable	Agreeable
3.	pH value	7.94	7.42	7.43	7.87
4.	Taste	Agreeable	Agreeable	Agreeable	Agreeable
5.	Turbidity	0.11	0.18	0.34	0.13
6.	Total Dissolved Solids	490.0	718.0	596.0	668.0
7.	Boron (as B)	0.06	0.10	0.08	0.07
8.	Calcium (as Ca)	31.2	78.4	84.0	46.4
9.	Chloride (as Cl)	40.1	85.2	95.3	34.5
10.	Copper (as Cu)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
11.	Fluoride (as F)	0.83	0.40	0.64	0.78
12.	Iron (as Fe)	0.08	0.25	0.14	0.12
13.	Magnesium (as Mg)	17.5	13.6	21.9	21.4
14.	Manganese (as Mn)	BDL (< 0.01)	0.03	0.01	0.02
15.	Sulphate (as SO ₄)	59.1	78.4	88.2	79.3
16.	Total Alkalinity (as CaCO ₃)	204.8	173.3	178.5	178.5
17.	Total Hardness (as CaCO ₃)	150.0	252.0	300.0	204.0
18.	Zinc (as Zn)	0.13	0.32	0.31	0.25
19.	Lead (as Pb)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
20.	Mercury (as Hg)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)
21.	Total Arsenic (as As)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
22.	Total Chromium (as Cr)	BDL (< 0.01)	0.01	BDL (< 0.01)	BDL (< 0.01)
23.	Free Residual Chlorine	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)
24.	Nitrate (as NO ₃)	2.43	10.6	4.80	9.84

			Concentration	
No.	Parameters	Near ETP Security Post, PZ-5	Location Nr. Old Switch Yard, PZ-6	Dugwell Water, Village- Sakharwahi
		18-05-2024	18-05-2024	18-05-2024
1.	Colour	4.0	2.0	2.0
2.	Odour	Agreeable	Agreeable	Agreeable
3.	pH value	7.72	7.42	7.94
4.	Taste	Agreeable	Agreeable	Agreeable
5.	Turbidity	0.46	0.17	BDL (< 0.1)
6.	Total Dissolved Solids	624.0	574.0	704.0
7.	Boron (as B)	0.16	0.09	0.06
8.	Calcium (as Ca)	68.0	58.4	78.4
9.	Chloride (as Cl)	98.4	80.1	164.8
10.	Copper (as Cu)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
11.	Fluoride (as F)	0.26	0.28	0.58
12.	Iron (as Fe)	0.18	0.28	0.19
13.	Magnesium (as Mg)	48.2	18.9	35.1
14.	Manganese (as Mn)	0.02	0.01	BDL (< 0.01)
15.	Sulphate (as SO ₄)	121.0	108.8	74.1
16.	Total Alkalinity (as CaCO ₃)	147.0	152.3	136.5
17.	Total Hardness (as CaCO ₃)	368.0	224.0	340.0
18.	Zinc (as Zn)	0.25	0.26	0.22
19.	Lead (as Pb)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
20.	Mercury (as Hg)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)
21.	Total Arsenic (as As)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
22.	Total Chromium (as Cr)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
23.	Free Residual Chlorine	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)
24.	Nitrate (as NO ₃)	12.5	16.8	10.9

			Concentra	ation	
			Location)n	
Sr. No.	Parameters	Dugwell Water, Village- Pandharkawda)	Borewell Water, Village- Sonegaon)	Dugwell Water, Village- Yerur)	Borewell Water, Village- Wandhri
		21-08-2024	21-08-2024	21-08-2024	21-08-2024
1.	Colour	1.0	1.0	5.0	2.0
2.	Odour	Agreeable	Agreeable	Agreeable	Agreeable
3.	pH value	7.10	7.02	7.14	7.14
4.	Taste	Agreeable	Agreeable	Agreeable	Agreeable
5.	Turbidity	0.48	0.26	0.48	0.13
6.	Total Dissolved Solids	984.0	914.0	938.0	852.0
7.	Boron (as B)	0.21	0.11	0.16	0.12
8.	Calcium (as Ca)	148.8	82.4	67.2	67.2
9.	Chloride (as Cl)	142.9	111.9	93.9	42.5
10.	Copper (as Cu)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
11.	Fluoride (as F)	0.22	0.43	0.25	0.61
12.	Iron (as Fe)	0.49	0.28	0.25	0.24
13.	Magnesium (as Mg)	59.4	34.6	25.3	28.3
14.	Manganese (as Mn)	0.02	0.02	0.03	0.04
15.	Sulphate (as SO ₄)	186.2	169.5	113.1	98.6
16.	Total Alkalinity (as CaCO ₃)	290.0	285.0	340.0	310.0
17.	Total Hardness (as CaCO ₃)	616.0	348.0	272.0	284.0
18.	Zinc (as Zn)	0.49	0.31	0.46	0.35
19.	Lead (as Pb)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
20.	Mercury (as Hg)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)
21.	Total Arsenic (as As)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
22.	Total Chromium (as Cr)	0.02	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
23.	Free Residual Chlorine	0.22	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)
24.	Nitrate (as NO ₃)	27.2	26.3	19.6	20.5

				Concentration	
				Location	
Sr. No.	Parameters	Dugwell Water, Village- Morwa)	Dugwell Water, Village –Ghodpeth)	Dugwell Water, Village – Tadali)	Ground Water from Intake Well near Wadha Village
		21-08-2024	21-08-2024	21-08-2024	21-08-2024
1.	Colour	2.0	1.0	1.0	2.0
2.	Odour	Agreeable	Agreeable	Agreeable	Agreeable
3.	pH value	7.57	7.34	7.18	7.07
4.	Taste	Agreeable	Agreeable	Agreeable	Agreeable
5.	Turbidity	0.37	0.57	0.28	0.27
6.	Total Dissolved Solids	878.0	826.0	968.0	774.0
7.	Boron (as B)	0.14	0.11	0.20	0.09
8.	Calcium (as Ca)	64.0	78.0	81.6	89.6
9.	Chloride (as Cl)	76.9	111.9	99.9	99.9
10.	Copper (as Cu)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
11.	Fluoride (as F)	0.32	0.65	0.32	0.24
12.	Iron (as Fe)	0.43	0.41	0.32	0.19
13.	Magnesium (as Mg)	36.1	34.1	46.8	43.8
14.	Manganese (as Mn)	0.01	BDL (< 0.01)	0.01	0.03
15.	Sulphate (as SO ₄)	48.7	140.4	104.8	143.1
16.	Total Alkalinity (as CaCO ₃)	340.0	240.0	250.0	210.0
17.	Total Hardness (as CaCO ₃)	308.0	336.0	396.0	404.0
18.	Zinc (as Zn)	0.26	0.32	0.26	0.24
19.	Lead (as Pb)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
20.	Mercury (as Hg)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)
21.	Total Arsenic (as As)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
22.	Total Chromium (as Cr)	BDL (< 0.01)	BDL (< 0.01)	0.01	BDL (< 0.01)
23.	Free Residual Chlorine	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)
24.	Nitrate (as NO ₃)	8.76	17.9	24.5	12.8

Note: 1) All the above Ground Water Quality Analysis were done by MOEF Approved 3^{rd} party M/s. Earthcare Labs Pvt. Ltd.

2) Information given to local panchayat through DIL CSR team for the necessary treatment & assistance.

			Concent	ration	
			Locat	ion	
Sr. No.	Parameters	Near Recovery Pump House-I,(Ash Pond) PZ-1	Near Recovery Pump House-II,(Ash Bund) PZ-2	Ash Pond II, PZ-3	Near Railway Crossing of WB-2, PZ-4
		21-08-2024	21-08-2024	21-08-2024	21-08-2024
1.	Colour	1.0	2.0	3.0	2.0
2.	Odour	Agreeable	Agreeable	Agreeable	Agreeable
3.	pH value	7.03	7.08	7.34	7.42
4.	Taste	Agreeable	Agreeable	Agreeable	Agreeable
5.	Turbidity	0.15	0.29	0.32	0.12
6.	Total Dissolved Solids	778.0	968.0	958.0	858.0
7.	Boron (as B)	0.08	0.13	0.08	0.11
8.	Calcium (as Ca)	53.6	116.8	59.2	71.2
9.	Chloride (as Cl)	34.9	166.5	33.9	35.5
10.	Copper (as Cu)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
11.	Fluoride (as F)	1.04	0.43	0.62	1.28
12.	Iron (as Fe)	0.12	0.31	0.20	0.18
13.	Magnesium (as Mg)	21.9	33.1	16.6	37.5
14.	Manganese (as Mn)	BDL (< 0.01)	0.04	0.02	0.01
15.	Sulphate (as SO ₄)	82.6	162.6	156.9	158.4
16.	Total Alkalinity (as CaCO ₃)	325.0	235.0	385.0	245.0
17.	Total Hardness (as CaCO ₃)	224.0	428.0	216.0	332.0
18.	Zinc (as Zn)	0.16	0.38	0.36	0.29
19.	Lead (as Pb)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
20.	Mercury (as Hg)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)
21.	Total Arsenic (as As)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
22.	Total Chromium (as Cr)	BDL (< 0.01)	0.02	BDL (< 0.01)	BDL (< 0.01)
23.	Free Residual Chlorine	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)
24.	Nitrate (as NO ₃)	1.37	7.14	3.63	6.32

Note: 1) All the above Ground Water Quality Analysis were done by MOEF Approved 3rd party M/s. Earthcare Labs Pvt. Ltd.

2) Information given to local panchayat through DIL CSR team for the necessary treatment & assistance.

			Concentration	
C	Donomotono		Location	
Sr. No.	Parameters	Near ETP Security	Nr. Old Switch Yard, PZ-6	Dugwell Water,
110.		Post, PZ-5		Village-Sakharwahi
		21-08-2024	21-08-2024	21-08-2024
1.	Colour	3.0	2.0	2.0
2.	Odour	Agreeable	Agreeable	Agreeable
3.	pH value	7.13	7.28	7.28
4.	Taste	Agreeable	Agreeable	Agreeable
5.	Turbidity	0.73	0.44	0.11
6.	Total Dissolved Solids	696.0	568.0	878.0
7.	Boron (as B)	0.19	0.09	0.06
3.	Calcium (as Ca)	64.0	33.6	99.2
€.	Chloride (as Cl)	77.9	57.9	45.9
0.	Copper (as Cu)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
1.	Fluoride (as F)	0.30	0.20	0.57
2.	Iron (as Fe)	0.22	0.25	0.24
3.	Magnesium (as Mg)	35.1	12.7	54.5
4.	Manganese (as Mn)	0.03	BDL (< 0.01)	BDL (< 0.01)
5 .	Sulphate (as SO ₄)	153.8	143.6	110.3
6.	Total Alkalinity (as CaCO ₃)	220.0	170.0	295.0
7.	Total Hardness (as CaCO ₃)	304.0	136.0	472.0
8.	Zinc (as Zn)	0.31	0.24	0.29
9.	Lead (as Pb)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
0.	Mercury (as Hg)	BDL (< 0.001)	BDL (< 0.001)	BDL (< 0.001)
	Total Arsenic (as As)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
2.	Total Chromium (as Cr)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
3.	Free Residual Chlorine	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)
1.	Nitrate (as NO ₃)	10.7	13.8	23.5

Annexure- 2

Sr. No.	Parameters						Co	oncentratio	n				
		April-24		May-24		June-24		July	y-24	Augu	ıst-24	Sept-24	
		TPP Unit I	TPP Unit II										
1.	Total Particulate Matter, mg/Nm ³	38.3	41.2	36.1	28.7	38.6	29.7	40.6	33.9	26.5	16.3	28.1	23.9
2.	Sulphur Dioxide as SO ₂ , mg/ Nm ³	1639.9	1560.1	1458.2	1587.2	1470.1	1569.3	1489.7	1572.9	1345.8	1520.7	1410.1	1535.6
4.	Oxides of Nitrogen as NO _{2,mg} /Nm	342.9	314.8	329.7	326.5	338.3	322.6	343.2	331.7	326.2	311.3	332.2	305.5
6.	Mercury as Hg, mg/Nm ³	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

Note: All the above Stack monitoring & Analysis were done by MOEF Approved 3rd party M/s Earthcare Labs Pvt. Ltd.

Annexure-3

DHARIWAL INFRASTRUCTURE LIMITED

Monthly Ash Generation and Utilization (For the Period from 1st April 2024 to 30th September 2024)

ASH GENERATION AND UTILIZATION (in MT)

SI. No.	Month	Ash Generation	Ash Utilization	Ash based/ Bricks/ Blocks/ Tiles etc.	In manufacture of Cement	In construction of Highways & Roads including Flyovers	In Ash dyke raising	In reclamation of low lying Area	In Mine filling	Unutilized Ash	Ash Utilization %
1	Apr-24	106363	106363	8565	97798	0	0	0	0	0	100.00
2	May-24	106005	106005	9812	96193	0	0	0	0	0	100.00
3	Jun-24	101802	101802	11845	89958	0	0	0	0	0	100.00
4	Jul-24	116818	106249	12502	93747	0	0	0	0	0	90.95
5	Aug-24	113208	113208	16716	96492	0	0	0	0	0	100.00
6	Sep-24	114182	117182	18654	98528	0	0	0	0	0	102.63
Total		658378	650809	78094	572716	0	0	0	0	0	98.93

<u>Annexure –4</u>

EFFLUENT QUALITY STATUS

	EFFLUEN	T QUALITY M	ONITORING RI	EPORT – A	pril-2024 to	September	r-2024		
Sr. No.	Parameter	NORMS		Apr.24	May.24	June.24	Jul.24	Aug.24	Sept.24
1.	pH value	6.5 to 8.5		8.21	7.85	7.12	6.76	6.77	7.52
2.	Total Dissolved Solids	2100		1334.0	1410.0	1292.0	844.0	938.0	630.0
3.	Total Suspended Solids	100	ETP Outlet	9.60	0.80	0.60	8.80	9.20	12.6
4.	Biochemical Oxygen Demand	30		6.40	7.55	6.40	7.40	8.20	8.60
5.	Chemical Oxygen Demand	250		48.0	51.7	44.3	53.6	59.8	55.7
6.	Oil & Grease	10		BDL (< 0.2)	BDL (< 0.2)	BDL (< 0.2)	BDL (< 0.2)	BDL (< 0.2)	BDL (< 0.2)

Note: The Effluent Quality monitoring done MOEF approved 3rd party M/s Earthcare Labs Pvt. Ltd.

Sl.No.	Parameter	Norms		Apr.24		May.24		June.24		Jul.24		Aug.24		Sept.24	
				unit – I	unit - II	unit - I	unit - II	unit - I	unit - II	unit - I	unit – II	unit - I	unit - II	unit - I	unit - II
1	PH	6.5 to 8.5	Condenser cooling Water	7.69	7.52	7.20	7.02	7.18	7.07	7.31	7.24	7.18	7.03	7.47	7.38
2	Free Available Chlorine	0.5	- water	0.13	0.16	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	0.10	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	0.11	0.13
3	Temp.	Shall not exceed 5°C		2.0	2.0	3.0	3.0	4.0	4.0	3.0	3.0	4.0	4.0	4.0	4.0

EFFLUENT QUALITY MONITORING REPORT – April-2024 to September-2024

Sl.No.	Parameter	Norms		Apr.24		May.24		June.24		Jul.24		Aug.24		Sept.24	
				unit - I	unit - II	unit - I	unit - II	unit - I	unit - II	unit - I	unit - II	unit - I	unit - II	unit - I	unit - II
1	Total Suspended solid	100 mg/l	Boiler Blow	3.40	4.20	2.60	1.20	1.60	3.10	9.20	2.80	11.2	3.20	14.2	8.60
2	Oil & Grease	10 mg/l	Down	BDL (< 0.2)	BDL (< 0.2)	BDL (< 0.2)									
3	Copper(Total)	1 mg/l		BDL (< 0.01)											
4	Iron(Total),mg/l	1 mg/l		BDL (< 0.05)											

Note: The Effluent Quality monitoring done by MoEF approved M/s Earthcare Labs Pvt. Ltd.

SI.No.	Parameter	Norms		Apr.24		May.24		June.24		Jul.24		Aug.24		Sept.24	
				unit -	unit - II	unit - I	unit - II	unit - I	unit - II	unit - I	unit - II	unit - I	unit - II	unit - I	unit - II
1	Free Available chlorine	0.5 mg/l	Cooling tower	BDL (< 0.1)	0.20	BDL (< 0.1)	BDL (< 0.1)	0.11	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	BDL (< 0.1)	0.12	0.13
2	Zinc	1 mg/l	blow down	0.49	0.67	0.46	0.63	0.49	0.65	0.47	0.59	0.51	0.64	0.43	0.69
3	Chromium (Total)	0.2 mg/l		BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
4	Phosphate	5 mg/l		0.07	0.08	BDL (< 0.08)	BDL (< 0.08)	0.11	0.12	0.14	0.09	0.17	0.11	0.14	0.12

	EFFLUENT QUALITY MONITORING REPORT – April-2024 to September-2024											
Sl.No.	Parameter	unit		Apr.24	May.24	June.24	Jul.24	Aug.24	Sept.24			
1	РН	1		8.41	7.42	8.24	6.92	6.72	7.09			
2	Oil & grease	mg/l		BDL (< 0.2)								
3	TSS	mg/l	Ash	8.40	3.40	1.20	21.0	19.4	28.8			
4	Lead (As Pb)	mg/l	Pond	0.03	0.02	0.01	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)			
5	Mercury (As Hg)	mg/l		BDL (< 0.001)								
6	Total Chromium (As Cr)	mg/l		BDL (< 0.01)								
7	Total Arsenic (As As)	mg/l		BDL (< 0.01)								
Note:	Effluent Quality Moni	toring o	done by	MoEF approved	3rd Party M/s	Earthcare La	bs Pvt. Ltd.					

EFFLUENT QUALITY MONITORING REPORT – April-2024 to September-2024

Sl.No.	Parameter	Norms	Unit		Apr.24	May.24	June.24	Jul.24	Aug.24	Sept.24
1	PH	6.5-9.0			7.43	7.17	7.16	7.21	7.20	7.03
2	Total Suspended Solids (TSS)	50	mg/L	STP Treated Effluent	6.40	5.40	1.70	2.20	2.90	3.20
3	BOD	30	mg/L		20.0	24.7	22.5	27.3	28.7	21.5
4	COD	100	mg/L			47.8	44.8	57.4	67.7	63.7

Note: Effluent Quality Monitoring done by MoEF approved 3rd Party M/s Earthcare Labs Pvt. Ltd.

Government of India

वाणिज्य और उद्योग मंत्रालय

Ministry of Commerce & Industry पेट्रोलियम तथा विस्फोटक सुरक्षा संगठन (पैसो)

Petroleum & Explosives Safety Organisation (PESO)

प्लाट संख्या 36-37, वार्ड संख्या 38, राठी लेआउट, राष्ट्रभाषा मार्ग, डाकघर हिंद नगर, वर्धा - 442003 वर्धा- 442003

Plot no. 36-37, Ward no. 38, Rathi Layout , Rashtrabhasha Road, Post Office, Hind Nagar, Wardha-(Maharashtra), Wardha - 442003

E-mail: dyccewardha@explosives.gov.in

Phone/Fax No: 7152245006

दिनांक /Dated : 09/11/2022

संख्या /No.: P/HQ/MH/15/6129 (P294572)

सेवा में /To.

M/s. Dhariwal Infrastructure Ltd., C-6 Tadali,MIDC Growth Centre,, NA, Tadali,

Chandrapur, Taluka: Nagbhir, District: CHANDRAPUR. State: Maharashtra PIN: 442406

विषय /Sub : Plot No, Plot No.C-6,, M.I.D.C.Tadali,, Village-MIDC Tadali,, Chandrapur, Taluka: Chandrapur, District: CHANDRAPUR, State: Maharashtra, PIN: 442406 में स्थित विद्यमान पेट्रोलियम वर्ग C अधिष्ठापन में अनुजित से P/HQ/MH/15/6129 (P294572) के नवीकरण के संदर्भ में । Existing Petroleum Class C Installation at Plot No, Plot No.C-6,, M.I.D.C.Tadali,, Village-MIDC Tadali,, Chandrapur, Taluka: Chandrapur, District: CHANDRAPUR, State: Maharashtra, PIN: 442406 - Licence No. P/HQ/MH/15/6129 (P294572) - Renewal

regarding.

महोदय /Sir

(s),

कृपया आपके पत्र क्रमांक OIN1180891 दिनांक 31/10/2022 का अवलोकन करें।

Please refer to your letter No.: OIN1180891, dated 31/10/2022

अनुत्रप्ति संख्या P/HQ/MH/15/6129 (P294572) दिनांक 23/01/2013 को दिनांक 31/12/2024 तक नवीनीकृत कर इस पत्र के साथ अग्रपित की जा रही है।

Licence No. P/HQ/MH/15/6129 (P294572) dated 23/01/2013 is forwarded herewith duly renewed upto 31/12/2024.

कृपया पेट्रोलियम नियम 2002 के अधीन बनाए गए नियम 148 में दी गई प्रक्रिया का कडाई से पालन करें। अनुज्ञप्ति के नवीकरण हेतु समस्त दस्तावेजों को अनुज्ञप्ति की वैधता समाप्त होने की तिथि से कम से कम 30 दिन पूर्व

Please follow the procedure strictly as laid down in rule 148 of the Petroleum Rules, 2002 and submit complete documents for the Renewal of the licence so as to reach this office on or before the date on which Licence expires.

कपया पावती हैं।

Please acknowledge the receipt.

WANT WIND

भवदीय /Yours faithfully,

((जनार्दन कमार)

(Janardan Kumar)) विस्फोटक नियंत्रक Controller of Explosives

विक्कोटक नियंत्रक, वर्धा

Note:-This is system generated document does not require signature.

(अधिक जानकारी जैसे आवेदन की स्थिति, शुल्क तथा अन्य विवरण के लिए हमारी वेबसाइट : http://peso.gov.in देखें)

(For more information regarding status, fees and other details please visit our website: http://peso.gov.in)

NOV 2022

प्ररूप XV (प्रथम अनुसूची का अनुच्छेद 6 देखिए) FORM XV (see Article 6 of the First Schedule)

अधिष्ठापनों में पेट्रोलियम के आयात और भंडारकरण के लिए अनुनन्नि

LICENCE TO IMPORT AND STORE PETROLEUM IN AN INSTALLATION

अनुज्ञप्ति सं. (Licence No.) : P/HQ/MH/15/6129(P294572)

फीस रूपए (Fee Rs.) 50000/- per year

M/s. Dhariwal Infrastructure Ltd., C-6 Tadali,MIDC Growth Centre,, NA, Tadali, Chandrapur, Taluka: Nagbhir, District: CHANDRAPUR, State: Maharashtra, PIN: 442406 को केवल इसमें यथा विनिर्देष्ट्र वर्ग और मात्राओं में पेट्रोलियम 2000.00 KL आयात करने के लिए और उसका, नीचे वर्णित और अनुमोदित नक्शा संख्या P/HQ/MH/15/6129(P294572) तारीख 29/10/2014 जो कि इससे उपाबद्ध हैं, में दिखाए गए स्थान पर भण्डारकरण के लिए पेट्रोलियम अधिनियम, 1934 के उपबंधों या उसके अधीन बनाए गए नियमों तथा इस अनुप्ति की अतिरिक्त शर्तों के अधीन रहते हुए, यह अनुप्ति अनुरत्त की जाती हैं।

Licence is hereby granted to M/s. Dhariwal Infrastructure Ltd., C-6 Tadali,MIDC Growth Centre,, NA, Tadali, Chandrapur, Taluka: Nagbhir, District: CHANDRAPUR, State: Maharashtra, PIN: 442406 valid only for the importation and storage of 2000.00 KL Petroleum of the class and quantities as herein specified and storage thereof in the place described below and shown on the approved plan No P/HQ/MH/15/6129(P294572) dated 29/10/2014 attached hereto subject to the provisions of the Petroleum Act, 1934 and the rule made thereunder and to the further conditions of this Licence.

यह अनुज्ञप्ति 31st day of December **2024** तक प्रवृत रहेगी। The Licence shall remain in force till the 31st day of December **2024**

पेट्रोलियम का विवरण /Description of Petroleum	अनुज्ञप्त मात्रा (किलोलीटरों में) /Quantity licenced in KL
वर्ग क प्रपुंज पेट्रोलियम /Petroleum Class A in bulk	NIL
वर्ग क प्रपुंज पेट्रोलियम से भिन्न /Petroleum Class A, otherwise than in bulk	NIL
वर्ग ख प्रपुंज पेट्रोलियम /Petroleum Class B in bulk	NIL
वर्ग ख प्रपुंज पेट्रोलियम से भिन्न /Petroleum Class B, otherwise than in bulk	NIL
वर्ग ग प्रपुंज पेट्रोलियम /Petroleum Class C in bulk	2000.00 KL
वर्ग ग प्रपुंज पेट्रोलियम से भिन्न /Petroleum Class C,otherwise than in bulk	NIL
कुल क्षमता /Total Capacity	2000.00 KL

January 23, 2013

For Chief Controller of Explosives HQ, Nagpur

अनुज्ञप्त परिसरों का विवरण और अवस्थान

DESCRIPTION AND LOCATION OF THE LICENSED PREMISES

अनुज्ञम परिसर जिसकी विन्यास सीमाएं अन्य विशिष्टयां संलम्न अनुमोदित नक्शों में दिखाई गई हैं Plot No: Plot No.C-6,, M.I.D.C.Tadali,, Village-MIDC Tadali,, Chandrapur, Taluka: Chandrapur, District: CHANDRAPUR, State: Maharashtra, PIN: 442406 स्थान पर अवस्थित है तथा उसमें निम्नलिखित Two aboveground petroleum class C(FO/LDO) storage tanks togetherwith connected facilities. सिम्मलित हैं |

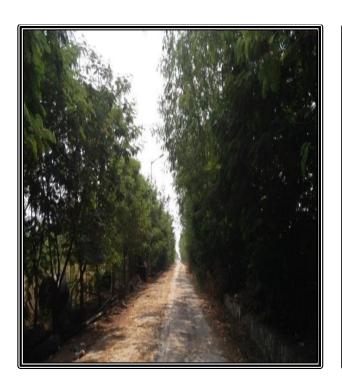
The licensed premises, the layout, boundaries and other particulars of which are shown in the attached approved plan are situated at Plot No. Plot No.C-6,, M.I.D.C.Tadali,, Village-MIDC Tadali,, Chandrapur, Taluka: Chandrapur, District: CHANDRAPUR, State: Maharashtra, PIN: 442406 and consists of Two aboveground petroleum class C(FO/LDO) storage tanks togetherwith connected facilities.

Note:-This is system generated document does

not require signature.

अनुज़प्ति संख्या-(Licence No.) P/HQ/MH/15/6129 (P294572)

नवीनीकरण के पृष्ठांकन के लिए स्थान SPACE FOR ENDORSEMENT OF RENEWALS


पेट्रोलियम अधिनियम, १९३४ के उपक्यों या उनके अधीन बनाए गए नियमों अनुबीत की गर्तों का उल्लंघन न होने की दशा में यह अनुबीत किस में बिना किसी छूट वं वक नवीकृत की जा सकेगी This licence shall be renewable without concession in fee for ten years in the absence contravention of any provisions of the Petrole Act, 1934 or of the rules framed thereunder or of the conditions of this licence.	के दस Date of Renewal any e of eum	समाप्ति की तारी Date of Expiry of lice	Signature and office stamp of the licencing
1).	10/01/2014	31/12/2014	Sd <i>l-</i> C.G.Kalambhe Controller of Explosives Wardha
2).	13/03/2015	31/12/2015	Sd <i>I</i> - H K Sharma Controller of Explosives Wardha
3).	19/11/2015	31/12/2016	Sd/- H K Sharma Controller of Explosives Wardha
4).	29/12/2016	31/12/2017	Sd/- H K Sharma Controller of Explosives Wardha
5).	15/01/2018	31/12/2022	Sd/- Mrs. Vijaya Sanjay Bardeo Dy. Controller of Explosives For Controller of Explosives Wardha
6).	09/11/2022	31/12/2024	Janardan Kumar Controller of Explosives Wardha विस्मादक नियाक, वर्धी ntroller of Explosives, Wardha

यदि अनुज्ञास परिसर इसमें उपाबद विवरण और शर्तों के अनुरुप नहीं पाए जाते है और जिन नियमों और शर्तों के अचीन यह अनुज्ञास पंक्र की गई है उनमे से किसी का उल्लंघन होने की दशा में यह अनुज्ञास रह की जा सकती है और अनुज्ञासिधारी प्रथम अपराध के लिए साधारण कारावास से, जो एक मास तक हो सकता है, या जुर्माने से, जो एक हजार रुपये तक हो सकता है, या दोनों से, और प्रत्येक पड़ातवर्ती अपराध के लिए साधारण कारावास से जो तीन मास तक हो सकता है, या जुर्माने से, जो एक हजार रुपये तक हो सकता है, या दोनों से, उपयोग के लिए साधारण कारावास से जो तीन मास तक हो सकता है, या जुर्माने से, जो एक हजार रुपये तक हो सकता है, या दोनों से, उपयोग हो से, उप हो से, उपयोग हो से, उप

This licence is liable to be cancelled if the licensed premises are not found conforming to the description given on the approved plan attached hereto and contravention of any of the rules and conditions under which this licence is granted and the holder of this licence is also punishable for the first offence with simple imprisonment which may be extend to one month, or with fine which may extend to one thousand rupees, or with both and for every subsequent offence with simple imprisonment which may extend to three months, or with fine which may extend to five thousand rupees or with both.

Note:-This is system generated document does not require signature.

Annexure-6
Photographs of Plantation inside Plant Premises

Annexure-7(A)

AMBIENT NOISE QUALITY STATUS

	Location	WIDIEN I	AAQMS	Cabin-01 IP Gate)	AAQMS	Cabin-02 P & RWH		Cabin-03						
			(INCAL V	II Gate)	Po	nd)	Ya	rd)						
Parameters	Month	Reading	During Day Time	During Night Time	During Day Time	During Night Time	During Day Time	During Night Time						
	April-2024	Leq	66.2	58.1	63.6	56.4	62.6	55.5						
	May-2024	Leq	65.6	57.7	63.9	56.1	62.1	55.1						
Noise Level	June-2024	Leq	65.8	56.4	63.5	55.7	61.6	54.6						
in dB (A)	July-2024	Leq	65.4	55.4	62.9	54.1	61.8	53.8						
	August-2024	Leq	64.5	51.8	61.9	52.1	62.1	52.3						
	September-24	Leq	65.6	55.9	63.0	55.0	62.3	54.5						
N	Norms Industrial Area 75 70 75 70 75 70													
Note: Noise (Quality Monitorin	g done by N	Note: Noise Quality Monitoring done by MoEF approved 3rd Party M/s Earthcare Labs Pvt. Ltd.,											

Annexure-7(B)

WORK PLACE NOISE QUALITY STATUS

	Mo	onth		y-2024		st- 2024
Parameters	Sr. No.	Location	Norms	Reading	Norms	Reading
	1	TG-1-12 Mtr. Unit-1	85	74.2	85	74.7
	2	TG-1-6Mtr. Near MOT Unit -1	85	77.2	85	76.7
	3	BFP Unit-1	85	75.7	85	74.5
	4	TG -2 12Mtr- Unit-2	85	77.5	85	76.8
Noise Level in dB (A)	5	TG-2 6 Mtr. Near MOT Unit -2	85	76.6	85	75.7
iii ub (A)	6	BFP Unit -2	85	77.7	85	76.3
	7	Mill Area Unit -1	85	75.6	85	75.7
	8	Mill Area Unit -2	85	76.1	85	74.4
	9	FD Fan-2 Unit-2	85	71.9	85	76.2

	Month		May	r-2024	Augu	st- 2024
Parameters	Sr. No.	Location	Norms	Reading	Norms	Reading
	10	ID Fan-2 Unit-2	85	71.3	85	73.3
	11	ID Fan –I-Unit -I	85	74.6	85	73.1
	12	FD Fan -1-Unit 1	85	72.8	85	73.5
Noise Level in dB	13	DG Compressor Room	85	79.1	85	76.1
(A)	14	AHP Compressor Room	85	75.8	85	73.2
	15	Boiler -1 12 Mtr APH	85	77.5	85	76.3
	16	Boiler -2 at 12 Mtr APH	85	80.5	85	81.7
	17	Chiller Area	85	67.9	85	64.8

Note: Noise Quality Monitoring done by MoEF approved 3rd Party M/s Earthcare Labs Pvt. Ltd.,

	Moi	nth	May	r-2024	Augus	st- 2024										
Parameters	Sr. No.	Location	Norms	Reading	Norms	Reading										
	18	Wagon Tipper area	85	73.8	85	73.9										
	19	Crusher Floor (3rd Floor)	85	73.4	85	72.1										
	20	Screen Floor(4 th Floor)	85	75.4	85	75.9										
Noise Level in	21	DSS Pump House	85	63.6	85	63.1										
dB (A)	22	Ash Slurry Pump House	85	71.9	85	72.9										
	23	LDO Pump House	85	73.3	85	72.1										
	24	CW Pump House	85	78.3	85	76.9										
	25	Fire Pump house	85	77.3	85	76.2										
Note: Noise Qua	ality Monito	oring done by MoEF approv	ed 3rd Party	M/s Earthcare	Labs Pvt. Ltd	ote: Noise Quality Monitoring done by MoEF approved 3rd Party M/s Earthcare Labs Pvt. Ltd.,										

$\underline{Annexure - 8}$

AMBIENT AIR QUALITY STATUS

1.0Location:- AAQMS Cabin-01 (Near VIP Gate)

Sr.	Domonostono	Names	77337 A			Concent	ration		
No.	Parameters	Norms	TWA	April-24	May-24	June-24	July-24	Aug-24	Sept-24
1.	Sulphur Dioxide (SO2) µg/m3	80	24 Hrs	9.46	7.50	7.38	9.19	8.62	7.86
2.	Nitrogen Dioxide (NO2) µg/m3	80	24 Hrs	15.9	13.4	15.9	14.4	13.5	11.8
3.	Particulate Matter of size less than 10 µm (PM10) µg/m3	100	24 Hrs	66.5	74.6	59.4	44.8	47.6	42.3
4.	Particulate Matterof size less than 2.5 µm (PM2.5)µg/m3	60	24 Hrs	33.9	35.2	31.3	21.7	23.9	19.5
5.	Ozone (O3) (µg/m3)	180	1 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
6.	Lead (Pb) (µg/m3)	1.0	24 Hrs	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
7.	Carbon Monoxide (CO) (mg/m3)	4	1 Hrs	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)
8.	Ammonia (NH3) (µg/m3)	400	24 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
9.	Benzene (C6H6) (µg/m3)	5	Annual	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)
10.	Benzo(a) Pyrene (BaP) (ng/m3)	1	Annual	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)
11.	Arsenic (As) (ng/m3)	6	Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
12.	Nickel (Ni) (ng/m3)	20	Annual	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)
13.	Mercury(as Hg) (µg/m3)		Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
Note	: All the above Ambient Air Quality	Analysis	were done	by MOEF Ap	proved 3 rd par	rty M/s Earth	care Labs Pv	t. Ltd.	

2.0Location: - AAQMS Cabin-02 (Near ETP and RWH pond)

Sr.	Donomotors	Norma	TXX/ A			Concent	ration		
No.	Parameters	Norms	TWA	April-24	May-24	June-24	July-24	Aug-24	Sept-24
1.	Sulphur Dioxide (SO2) µg/m3	80	24 Hrs	9.06	8.65	7.08	7.06	6.49	7.53
2.	Nitrogen Dioxide (NO2) µg/m3	80	24 Hrs	16.1	14.8	12.4	11.1	11.2	11.4
3.	Particulate Matter of size less than 10 µm (PM10) µg/m3	100	24 Hrs	73.8	75.6	58.2	40.6	41.6	43.2
4.	Particulate Matterof size less than 2.5 μm (PM2.5)μg/m3	60	24 Hrs	36.2	32.5	31.5	17.8	18.8	21.7
5.	Ozone (O3) (µg/m3)	180	1 Hrs	BDL (< 20.0)					
6.	Lead (Pb) (µg/m3)	1.0	24 Hrs	BDL (< 0.01)					
7.	Carbon Monoxide (CO) (mg/m3)	4	1 Hrs	BDL (< 1.1)					
8.	Ammonia (NH3) (µg/m3)	400	24 Hrs	BDL (< 20.0)					
9.	Benzene (C6H6) (µg/m3)	5	Annual	BDL (< 4.0)					
10.	Benzo(a) Pyrene (BaP) (ng/m3)	1	Annual	BDL (< 0.8)					
11.	Arsenic (As) (ng/m3)	6	Annual	BDL (< 2.0)					
12.	Nickel (Ni) (ng/m3)	20	Annual	BDL (< 3.5)					
13.	Mercury(as Hg) (μg/m3) : All the above Ambient Air Quality		Annual	BDL (< 2.0)					

3.0Location: - AAQMS Cabin-03 (Near Old Switchyard)

r Dioxide (SO2) µg/m3 en Dioxide (NO2) µg/m3 late Matter of size less than (PM10) µg/m3 late Matterof size less than (PM2.5) µg/m3	80 80 100	TWA 24 Hrs 24 Hrs	8.73 14.7	May-24 8.99 15.7	8.51 13.8	July-24 8.48	Aug-24 7.30	Sept-24 8.01
en Dioxide (NO2) µg/m3 late Matter of size less than (PM10) µg/m3 late Matterof size less than	80	24 Hrs					7.30	8.01
late Matter of size less than (PM10) µg/m3			14.7	15.7	13.8			
(PM10) μg/m3 late Matterof size less than	100	24 Hrs			13.0	14.5	12.3	13.5
		2.1113	67.7	68.5	57.4	43.9	42.5	42.6
(1 1/12.3)μg/1113	60	24 Hrs	33.2	33.9	31.7	20.3	19.5	21.7
(O3) (µg/m3)	180	1 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
Pb) (μg/m3)	1.0	24 Hrs	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
Monoxide (CO) (mg/m3)	4	1 Hrs	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)
nia (NH3) (μg/m3)	400	24 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
ne (C6H6) (µg/m3)	5	Annual	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)
(a) Pyrene (BaP) (ng/m3)	1	Annual	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)
c (As) (ng/m3)	6	Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
(Ni) (n ~/m 2)	20	Annual	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)
(N1) (ng/m3)		Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
2	a) Pyrene (BaP) (ng/m3) (As) (ng/m3) (Ni) (ng/m3)	(Ni) (ng/m3) 1 (Ni) (ng/m3) 6 (Ni) (ng/m3) 20	(As) (ng/m3) 1 Annual (Ni) (ng/m3) 20 Annual	(As) (ng/m3) 1	a) Pyrene (BaP) (ng/m3) 1 Annual BDL (< 0.8) BDL (< 0.8) 6 Annual BDL (< 2.0) BDL (< 2.0) Ni) (ng/m3) 20 Annual BDL (< 3.5) BDL (< 3.5)	a) Pyrene (BaP) (ng/m3) 1 Annual BDL (< 0.8) BDL (< 0.8) 8 (As) (ng/m3) 6 Annual BDL (< 2.0) BDL (< 2.0) 8 (Ni) (ng/m3) 20 Annual BDL (< 3.5) BDL (< 3.5) 8 (Si) (Ri) (rig/m3) 8 (Si) (a) Pyrene (BaP) (ng/m3) 1 Annual BDL (< 0.8) BDL (< 0.8) BDL (< 0.8) BDL (< 0.8) 4 (As) (ng/m3) 6 Annual BDL (< 2.0) BDL (< 2.0) BDL (< 2.0) BDL (< 2.0) (Ni) (ng/m3) 20 Annual BDL (< 3.5) BDL (< 3.5) BDL (< 3.5) BDL (< 3.5)	a) Pyrene (BaP) (ng/m3) 1 Annual BDL (< 0.8) 4 (As) (ng/m3) 6 Annual BDL (< 2.0) BDL (< 2.0) BDL (< 2.0) BDL (< 2.0) BDL (< 3.5) BDL (< 3.6) BDL (<

4.0 Location: - GET Hostel

Sr.	Parameters	Namma	TT X X / A			Concent	ration		
No.	Farameters	Norms	TWA	April-24	May-24	June-24	July-24	Aug-24	Sept-24
1.	Sulphur Dioxide (SO2) µg/m3	80	24 Hrs	9.16	7.45	7.47	7.33	6.92	6.04
2.	Nitrogen Dioxide (NO2) µg/m3	80	24 Hrs	16.3	13.1	14.8	11.7	12.3	10.6
3.	Particulate Matter of size less than 10 µm (PM10) µg/m3	100	24 Hrs	55.2	56.8	62.9	38.1	39.4	35.4
4.	Particulate Matterof size less than 2.5 µm (PM2.5)µg/m3	60	24 Hrs	26.6	25.4	27.3	15.5	17.7	17.4
5.	Ozone (O3) (µg/m3)	180	1 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
6.	Lead (Pb) (µg/m3)	1.0	24 Hrs	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
7.	Carbon Monoxide (CO) (mg/m3)	4	1 Hrs	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)
8.	Ammonia (NH3) (µg/m3)	400	24 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
9.	Benzene (C6H6) (µg/m3)	5	Annual	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)
10.	Benzo(a) Pyrene (BaP) (ng/m3)	1	Annual	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)
11.	Arsenic (As) (ng/m3)	6	Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
12.	Nickel (Ni) (ng/m3)	20	Annual	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)
13.	Mercury(as Hg) (µg/m3)		Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
Note	: All the above Ambient Air Quality	Analysis	were done	by MOEF An	proved 3 rd par	rty M/s Earth	care Labs Pv	t. Ltd.	•

5.0 Location: - Near Ash Pond

Sr.	Donomotons	Norma	TT X X / A			Concent	ration		
No.	Parameters	Norms	TWA	April-24	May-24	June-24	July-24	Aug-24	Sept-24
1.	Sulphur Dioxide (SO2) µg/m3	80	24 Hrs	7.04	8.94	7.18	7.04	7.01	8.85
2.	Nitrogen Dioxide (NO2) µg/m3	80	24 Hrs	13.9	15.1	12.7	11.2	10.9	12.4
3.	Particulate Matter of size less than 10 µm (PM10) µg/m3	100	24 Hrs	52.8	55.6	53.5	38.6	37.4	36.3
4.	Particulate Matterof size less than 2.5 µm (PM2.5)µg/m3	60	24 Hrs	24.6	24.5	22.3	15.8	18.4	19.7
5.	Ozone (O3) (µg/m3)	180	1 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
6.	Lead (Pb) (µg/m3)	1.0	24 Hrs	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
7.	Carbon Monoxide (CO) (mg/m3)	4	1 Hrs	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)
8.	Ammonia (NH3) (µg/m3)	400	24 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
9.	Benzene (C6H6) (µg/m3)	5	Annual	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)
10.	Benzo(a) Pyrene (BaP) (ng/m3)	1	Annual	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)
11.	Arsenic (As) (ng/m3)	6	Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
12.	Nickel (Ni) (ng/m3)	20	Annual	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)
13.	Mercury(as Hg) (µg/m3)		Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
Note	: All the above Ambient Air Quality	Analysis	were done	by MOEF An	proved 3 rd par	rty M/s Earth	care Labs Pv	t. Ltd.	

6.0 Location: - Mr. Maroti Shankar Roge house Village-Sonegaon

Powermetows	Namma	TT X X / A			Concent	ration		
Parameters	Norms	1 WA	April-24	May-24	June-24	July-24	Aug-24	Sept-24
Sulphur Dioxide (SO2) µg/m3	80	24 Hrs	7.57	8.59	9.22	9.13	7.13	6.85
Nitrogen Dioxide (NO2) µg/m3	80	24 Hrs	13.8	15.3	14.5	14.5	13.9	10.3
Particulate Matter of size less than 10 µm (PM10) µg/m3	100	24 Hrs	46.3	45.7	47.8	39.4	40.5	32.5
Particulate Matterof size less than 2.5 µm (PM2.5)µg/m3	60	24 Hrs	22.8	22.9	23.9	17.6	19.1	17.9
Ozone (O3) (µg/m3)	180	1 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
Lead (Pb) (µg/m3)	1.0	24 Hrs	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)	BDL (< 0.01)
Carbon Monoxide (CO) (mg/m3)	4	1 Hrs	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)	BDL (< 1.1)
Ammonia (NH3) (µg/m3)	400	24 Hrs	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
Benzene (C6H6) (µg/m3)	5	Annual	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)	BDL (< 4.0)
Benzo(a) Pyrene (BaP) (ng/m3)	1	Annual	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)	BDL (< 0.8)
Arsenic (As) (ng/m3)	6	Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
Nickel (Ni) (ng/m3)	20	Annual	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)	BDL (< 3.5)
Mercury(as Hg) (µg/m3)		Annual	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)	BDL (< 2.0)
	Nitrogen Dioxide (NO2) µg/m3 Particulate Matter of size less than 10 µm (PM10) µg/m3 Particulate Matterof size less than 2.5 µm (PM2.5) µg/m3 Ozone (O3) (µg/m3) Lead (Pb) (µg/m3) Carbon Monoxide (CO) (mg/m3) Ammonia (NH3) (µg/m3) Benzene (C6H6) (µg/m3) Benzo(a) Pyrene (BaP) (ng/m3) Arsenic (As) (ng/m3) Nickel (Ni) (ng/m3)	Sulphur Dioxide (SO2) μg/m3 80 Nitrogen Dioxide (NO2) μg/m3 80 Particulate Matter of size less than 10 μm (PM10) μg/m3 100 Particulate Matterof size less than 2.5 μm (PM2.5)μg/m3 60 Ozone (O3) (μg/m3) 180 Lead (Pb) (μg/m3) 1.0 Carbon Monoxide (CO) (mg/m3) 4 Ammonia (NH3) (μg/m3) 400 Benzene (C6H6) (μg/m3) 5 Benzo(a) Pyrene (BaP) (ng/m3) 1 Arsenic (As) (ng/m3) 6 Nickel (Ni) (ng/m3) 20	Sulphur Dioxide (SO2) μg/m3 80 24 Hrs Nitrogen Dioxide (NO2) μg/m3 80 24 Hrs Particulate Matter of size less than 10 μm (PM10) μg/m3 100 24 Hrs Particulate Matterof size less than 2.5 μm (PM2.5)μg/m3 60 24 Hrs Ozone (O3) (μg/m3) 180 1 Hrs Lead (Pb) (μg/m3) 1.0 24 Hrs Carbon Monoxide (CO) (mg/m3) 4 1 Hrs Ammonia (NH3) (μg/m3) 400 24 Hrs Benzene (C6H6) (μg/m3) 5 Annual Benzo(a) Pyrene (BaP) (ng/m3) 1 Annual Arsenic (As) (ng/m3) 6 Annual Nickel (Ni) (ng/m3) 20 Annual	April-24 Sulphur Dioxide (SO2) μg/m3 80 24 Hrs 7.57 Nitrogen Dioxide (NO2) μg/m3 80 24 Hrs 13.8 Particulate Matter of size less than 10 μm (PM10) μg/m3 100 24 Hrs 46.3 Particulate Matterof size less than 2.5 μm (PM2.5)μg/m3 60 24 Hrs 22.8 Ozone (O3) (μg/m3) 180 1 Hrs BDL (< 20.0)	Sulphur Dioxide (SO2) μg/m3 80 24 Hrs 7.57 8.59 Nitrogen Dioxide (NO2) μg/m3 80 24 Hrs 13.8 15.3 Particulate Matter of size less than 10 μm (PM10) μg/m3 100 24 Hrs 46.3 45.7 Particulate Matter of size less than 2.5 μm (PM2.5)μg/m3 60 24 Hrs 22.8 22.9 Ozone (O3) (μg/m3) 180 1 Hrs BDL (< 20.0)	Parameters Norms TWA April-24 May-24 June-24 Sulphur Dioxide (SO2) μg/m3 80 24 Hrs 7.57 8.59 9.22 Nitrogen Dioxide (NO2) μg/m3 80 24 Hrs 13.8 15.3 14.5 Particulate Matter of size less than 10 μm (PM10) μg/m3 100 24 Hrs 46.3 45.7 47.8 Particulate Matter of size less than 2.5 μm (PM2.5) μg/m3 60 24 Hrs 22.8 22.9 23.9 Ozone (O3) (μg/m3) 180 1 Hrs BDL (< 20.0)	Sulphur Dioxide (SO2) μg/m3 80 24 Hrs 7.57 8.59 9.22 9.13 Nitrogen Dioxide (NO2) μg/m3 80 24 Hrs 13.8 15.3 14.5 14.5 Particulate Matter of size less than 10 μm (PM10) μg/m3 100 24 Hrs 46.3 45.7 47.8 39.4 Particulate Matter of size less than 10 μm (PM2.5)μg/m3 60 24 Hrs 22.8 22.9 23.9 17.6 Ozone (O3) (μg/m3) 180 1 Hrs BDL (< 20.0)	Parameters Norms TWA April-24 May-24 June-24 July-24 Aug-24 Sulphur Dioxide (SO2) μg/m3 80 24 Hrs 7.57 8.59 9.22 9.13 7.13 Nitrogen Dioxide (NO2) μg/m3 80 24 Hrs 13.8 15.3 14.5 14.5 13.9 Particulate Matter of size less than 10 μm (PM10) μg/m3 100 24 Hrs 46.3 45.7 47.8 39.4 40.5 Particulate Matter of size less than 10 μm (PM2.5) μg/m3 60 24 Hrs 22.8 22.9 23.9 17.6 19.1 Ozone (O3) (μg/m3) 180 1 Hrs BDL (< 20.0)

7.0 Location: - Terrace of Shri Bapurao Pimpalkar House, Village - Wandhri

Sr.	Parameters	Namma	TWA			Concent	ration		
No.	rarameters	Norms	1 W A	April-24	May-24	June-24	July-24	Aug-24	Sept-24
1.	Sulphur Dioxide (SO2) µg/m3	80	24 Hrs	8.46	7.57	8.62	8.46	6.74	7.18
2.	Nitrogen Dioxide (NO2) µg/m3	80	24 Hrs	11.7	12.8	13.8	12.3	12.4	10.5
3.	Particulate Matter of size less than 10 µm (PM10) µg/m3	100	24 Hrs	46.6	47.8	50.3	35.1	37.4	33.3
4.	Particulate Matterof size less than 2.5 µm (PM2.5)µg/m3	60	24 Hrs	21.2	22.9	25.5	16.4	19.1	18.9
5.	Ozone (O3) (µg/m3)	180	1 Hrs	BDL (< 20.0)					
6.	Lead (Pb) (µg/m3)	1.0	24 Hrs	BDL (< 0.01)					
7.	Carbon Monoxide (CO) (mg/m3)	4	1 Hrs	BDL (< 1.1)					
8.	Ammonia (NH3) (µg/m3)	400	24 Hrs	BDL (< 20.0)					
9.	Benzene (C6H6) (µg/m3)	5	Annual	BDL (< 4.0)					
10.	Benzo(a) Pyrene (BaP) (ng/m3)	1	Annual	BDL (< 0.8)					
11.	Arsenic (As) (ng/m3)	6	Annual	BDL (< 2.0)					
12.	Nickel (Ni) (ng/m3)	20	Annual	BDL (< 3.5)					
13.	Mercury(as Hg) (μg/m3) : All the above Ambient Air Quality		Annual	BDL (< 2.0)					

8.0 Location: - Terrace of Gram Panchayat, Village- Yerur

Sr.	Downwatawa	Namma	TT X X / A			Concent	ration		
No.	Parameters	Norms	TWA	April-24	May-24	June-24	July-24	Aug-24	Sept-24
1.	Sulphur Dioxide (SO2) µg/m3	80	24 Hrs	8.74	8.74	6.81	8.77	6.51	7.52
2.	Nitrogen Dioxide (NO2) µg/m3	80	24 Hrs	13.9	12.7	10.6	13.8	12.3	13.3
3.	Particulate Matter of size less than 10 µm (PM10) µg/m3	100	24 Hrs	52.3	51.6	50.8	37.2	36.4	36.4
4.	Particulate Matter of size less than 2.5 µm (PM2.5)µg/m3	60	24 Hrs	22.3	22.8	20.3	17.9	17.1	19.8
5.	Ozone (O3) (µg/m3)	180	1 Hrs	BDL (< 20.0)					
6.	Lead (Pb) (µg/m3)	1.0	24 Hrs	BDL (< 0.01)					
7.	Carbon Monoxide (CO) (mg/m3)	4	1 Hrs	BDL (< 1.1)					
8.	Ammonia (NH3) (µg/m3)	400	24 Hrs	BDL(< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)	BDL (< 20.0)
9.	Benzene (C6H6) (µg/m3)	5	Annual	BDL (< 4.0)					
10.	Benzo(a) Pyrene (BaP) (ng/m3)	1	Annual	BDL (< 0.8)					
11.	Arsenic (As) (ng/m3)	6	Annual	BDL (< 2.0)					
12.	Nickel (Ni) (ng/m3)	20	Annual	BDL (< 3.5)					
13	Mercury(as Hg) (µg/m3) All the above Ambient Air Quality		Annual	BDL (< 2.0)					

Annexure-9

DHARIWAL INFRASTRUCTURE LIMITED,

Tadali, Dist. Chandrapur

6 Month April 2024 to Sept. 2024 Consolidated Report on Corporate Social Responsibility Year 2024-2025

Broad CSR Initiatives

- 1) Education Program
- 2) SHG Program
- 3) Agriculture Program
- 4) Health & Sanitation Program
- 5) Adolescence girls Program
- 6) Rural development & Skill development Program

Education Program

Objective:

To ensure access to quality education for 460 children aged 6 to 14 years, while fostering their overall development through a diverse range of extracurricular activities. Our goal is to create an enriching educational environment that not only enhances academic performance but also cultivates essential life skills, creativity, and social engagement among the children.

Activities Conducted:

- 1. **Balsakhi Meetings**: Successfully conducted six monthly meetings to compile comprehensive reports from nine villages.
- 2. **Summer Camp**: Organized a summer camp with the active participation of 589 students from all nine villages.
- 3. **Education Survey Training:** Organized Survey training at Padoli CSR office for Balsakhi 20 participants were attend the training.
- 4. **Survey**: Conducted Survey at 10 villages. (Shengaon, Anturla, Sonegaon, Pandharkwada, Dhanora, Wadha, Morva, Tadali, Yerur & Chargoan.) 460 students were enrolled.
- 5. **GP Members Meeting**: Facilitated a meeting with 14 Gram Panchayat (GP) members to discuss community engagement and educational initiatives.
- 6. **Parents Meetings**: Held informative meetings with 278 parents across the nine villages to strengthen community ties and involvement.
- 7. **General Knowledge Exam**: Organized an exam that saw participation from 256 students, fostering knowledge and engagement.
- 8. **Navodaya Classes**: Launched Navodaya Class in Pandharkawada benefiting 15 students and enhancing their language skills.
- 9. **Chawadi Vachan Program**: Conducted chawadi wachan program. 456 students were participated.
- 10. **Mazi Kamai Program**: Conducted **Mazi Kamai** program at 9 Villages with 349 participants.
- 11. **Sports kit Donation**: Donated sports kit to 8 youth in Sonegaon village. To provide underprivileged youth and communities with necessary equipment to participate in sports, encouraging physical fitness.
- 12. **Maharashtra Day Celebration**: Celebrated Maharastra day on 1st July 2024 at Shengaon with 33 participants.
- 13. **Felicitation of meritorious students:** Organized Felicitation of meritorious students at ZP school Dhanora. 21 students were got the prize.
- 14. **Career Guidance Program**: Collaborated with the PAHEL organization to provide career guidance, benefitting 238 students.

- 15. **Drawing Competition**: Engaged 128 students in Yerur through a drawing competition, encouraging creativity and artistic expression.
- 16. **Navaratri & Ganesh Festival**: Celebrated the Navaratri & Ganesh Festival Festival in all nine villages, promoting cultural awareness and community participation.
- 17. **School Management Committee Meetings**: Coordinated meetings with the School Management Committee and Sarpanch in the nine villages to discuss educational strategies.
- 18. **Residential 3 days Balsakhi Workshops**: Conducted three professional development workshops focusing on Mathematics, Language, and English for Balsakhi (teachers). 21 Balsaki teachers attended training program.
- 19. **Monthly Syllabus Exams**: Administered syllabus-wise examinations in all nine villages to assess student progress as monthly basis.

Outcomes

- **Syllabus Coverage**: Achieved 50% syllabus completion by September.
- **Student Engagement**: Students effectively utilized their summer camp experience and showcased their talents through cultural programs, drawing competitions, and general knowledge activities.
- **Parental and Community Involvement**: Parents and School Management Committee members demonstrated active participation in educational program.
- **Students Appreciation:** Boosting the morale of not only the awardees but also their peers, encouraging a culture of excellence.

Drawing competition

GK Prize Competition

Notebooks distribution

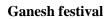
Sports kit distribution

Balsakhi training inauguration program

Balsakhi Training

Navodaya Class

Teacher day celebration



Felicitation of meritorious students

Parents Meeting

SHG Program

Objective:

To motivate and enable 100 women for self-employment through Self-Help Groups (SHGs) and provide them with the capital to establish micro-enterprises.

Activities Conducted:

1. Monthly Business Data Collection Meetings:

Conducted six monthly meetings to collect business data, facilitating on-going assessment and support for SHG members.

2. Collaborative Meetings:

Engaged with representatives from the Rural Credit Trust (RCT), Panchayat Samiti, NABARD, Agriculture Department, District industries centre (DIC), Animal Husbandry Department & ATMA organization to discuss and plan a self-employment training program aimed at empowering SHG members.

3. Navratri Festival Organization:

Successfully organized the Navratri festival across nine villages, with 567 participants engaging in community-building activities.

4. Training Programs:

Facilitated a five days training program on Spices & cosmetic making training at Mahatma Gandhi institute for rural industrialization (MGIRI), Wardha benefiting 40 SHG members and enhancing their skills for self-employment.

- 5. **Inauguration of beauty parlour:** Organized inauguration program at Morva, Shengaon & Wadha villages. 3 SHG members have started new beauty parlour at village level.
- 6. **Deep freezer Donation:** Donated deep freezer to 2 SHG members at Yerur & Wadha. 2 SHG members have started ice cream parlour.
- 7. **Donation of stitching machine:** Donated 1 stitching machine to SHG member at Sonegaon. She has started stitching business.

8. Monthly Village Meetings:

Conducted regular monthly meetings in nine villages to ensure consistent engagement and support for SHG members.

9. Capacity Building Training program: Organized training program for SHG member at Shengaon, Yerur, Wadha & Anturla villages. To enhance the skills, knowledge, and confidence of Self-Help Group (SHG) members, empowering them for self-employment and effective community participation. 289 members were attended the program.

10. Survey for New Group Formation:

Conducted surveys in 9 villages for potential new group formation, successfully establishing two new SHG group in Anturla & Sonegaon.

11. **Sports for SHG members:** Organized sports for SHG members at Morwa village. 38 women were participated.

12. Business Performance Monitoring:

Conducted quarterly assessments of 20 existing businesses, resulting in detailed reports on sales growth, profitability, and operational challenges.

Outputs:

• Income Generation:

23 SHG members have initiated Spices & cosmetic making businesses, beauty parlour business & Ice cream parlour business creating new sources of income at the village level.

• Training Readiness:

60 SHG members have expressed readiness to undergo training for LED bulb making, indicating interest in diversifying their skills.

• **Gov. scheme benefits:** 35 members applied for animal feeding schemes and 1 self-help group (SHG) linked to ATMA.

• Increased Participation:

Engaged over 200 community members in awareness sessions, leading to heightened interest and involvement in women's empowerment initiatives.

• Market Linkages Established:

Facilitated connections between 4 businesses (Stitching unit, Beauty parlour, LED bulb production unit, Paper plates production unit) and local markets or suppliers, increasing their reach and enabling better procurement of materials.

SHG Meeting

Spices & Cosmetic making Training

Certificate Distribution

Sports Program

Beauty parlor Inauguration

Deep freezer Donation

Ice Cream Distribution

Capacity Building Training

Donation of stitching machine

Meeting with Deep Jyoti LED bulb Group

दुप्ति चिर्मिटेड या कंपनीलेटेड सार्कपालेटें सामाजिक प्राप्तव्य कंपनीलेंटें सामाजिक प्राप्तव्य सिमामातर्गत चंद्रपूर चिल्ह्यातील सोनेमाव, रोणमाव, बढा, सानेता, मोरखा, येकर, पांढरकडा, ताडाली व अंतृत्वा गावातील बचत गटातील महिलांना बेगवंगळं प्रशिक्षण वेण्यात वेत आते. या प्रशिक्षणात् कंद्र स्माहलांना रोजगार मिळाला

आहे.
कंपनीचे मुख्य महाप्रबंधक
सोमेन बोरुआ यांच्या
मार्गदर्शनातून प्रशिक्षण सुरू
आहे. यात ब्युटी पार्लर प्रशिक्षण
एलईडी बल्ब प्रशिक्षण
समाला

अंडकान्स टीचिंग प्रशिक्षण, वि फास्ट फूड प्रशिक्षण, बेकरी प्रशिक्षण, आईस्क्रीम पार्लर, म कॉस्मेटिक प्रशिक्षण, झुणका रो भाकर व शेर्च्य भिंतन है वेगवेगके क्ष प्रशिक्षण पेडल महिलासाठी हो रोज्गार निर्मिती करण्यात येत

Chandrapur Edition Jun 27, 2024 Page No. 02 Powered by: erelego.com

धारिवाल कंपनी अंतर्गत महिलांना ब्युटी पार्लर किट वाटप

घुम्युस : धरिवाल इफ्रास्ट्रुइर लिमीटेड व पहेल मल्टिपर्पज सोसायटी चंदपुर यांच्या संयुक्त विद्यमानं सामाजिक वायिवव विमानातर्फ मुख्य महाप्रवंधक सोमेन बोल्डजा यांच्या मार्गवर्शनातुन वचत गटावील महिलांना व युवकांना रोजगारनिर्मिती व स्वावलंबी बनविण्यासाठी वेगवेगके उपक्रम राबविले जातात,याच माध्यमातुन वचत, शेनगाव, ताडाली, पांडरकचडा व मोरचा येथील महिलांना एका महिन्याचं अङ्कानस्य ख्रुटी पार्लर प्रशिक्षण वेऊन त्यांना ख्रुटी पार्लर किट वेण्यात आली. या कार्यक्रमाचे उद्घाटन अर्पिता बोल्डजा स्पृपुख पाहुणे स्थूपन सहायक व्यवस्थापक धीरण ताटोवा, स्पर्थक किशोर वरावन्त, उपसरपंच भूषण पिवुरकर यांची उपस्थिती होती. प्रास्ताविक धीरज ताटेवार यांनी केले.या कार्यक्रमाच्या माध्यमातुन पोणिंगा गिरङकर, शिराल जोनेकर, मंजुष अतकरती, या महिलांनी आपल्या घरी पार्लर सुरू करून आपल्या व्यवसायाला सुरूवात केली.

Agriculture Program

Objective:

To promote and strengthen the efficient and effective management of agricultural production and productivity through comprehensive farm management practices, ensuring the economic and environmental sustainability of farmers.

Activities Conducted:

1. Farmers Club Meetings:

Organized meetings across nine villages, engaging 326 farmers in discussions on agricultural practices and sustainability.

2. Awareness on Government Schemes:

Informed farmers about the government's crop insurance scheme, promoting financial security in agricultural production.

3. Distribution of Fruit Saplings:

Distributed 1960 fruit saplings to farmers in nine villages, promoting sustainable agricultural practices and enhancing food security.

- 4. **Distribution of pots & flower saplings:** Distributed 100 flower saplings & pots to Tadali Grampanchayat.
- **5. Training Program:** Organized training for farmers at Yerur village. 35 farmers were attended the training.

Outputs:

• Increased Awareness of Government Schemes:

176 farmers successfully applied for the government crop insurance scheme, benefiting from enhanced risk management.

• Enhanced Knowledge on Seed Selection:

Farmers gained valuable information regarding seed selection practices prior to cultivation, improving crop quality and yield.

• Initiation of Agricultural Projects:

Plans are underway to commence agricultural projects in collaboration with NABARD, aiming to further enhance productivity.

• Sustainable Planting Practices:

Villagers successfully planted fruit saplings in their homes and farms, contributing to local biodiversity and food resources.

Farmers Meeting

Fisheries business

Fruit saplings distribution

Farmers Training

Plantation

Agricuture office visit

Health & Sanitation Program

Objective:

To enhance the general quality of life in rural areas by motivating communities and Panchayati Raj Institutions through awareness creation and health education.

Activities Conducted:

1. Health Checkup Camps:

Organized six health checkup camps across six villages: Wadha, Dhanora, Sonegaon, Morwa, Anturla, and Yerur. The participation details are as follows:

Sr. No.	Village Name	Total Beneficiaries
1	Sonegaon	65
2	Shengaon	81
3	Yerur	85
4	Dhanora	67
5	Wadha	71
6	Anturla	35
	Total	404

2. Animal Health Check-up Camp:

Conducted an Animal health check-up camp at Four villages (Sonegaon, Yerur Dhanora & Anturla). 405 animals were treated. The participation list are as follows:

Sr. No.	Village Name	Total Beneficiaries
1	Sonegaon	60
2	Yerur	200
3	Dhanora	85
4	Anturla	60
	Total	405

Outputs:

• Medical Treatment Provided:

404 villagers & 405 animals received free medical treatment.

Health Checkup camp

Animal Health checkup

Spectacle distribution

गावातील नागरिकांसाठी मोफत आरोग्य तपासणी

धारिवाल इन्फ्रास्ट्रक्चरचा सुप्त उपक्रम

देशोचती वृत्तसंकलन

देशोचती वृत्तसंकरान प्राप्त हुम्मुस : धारिवाल इन्फ्रास्ट्रक्चर लिमिटेड, देवपुर पहेल मल्टीपर्पज सोसायदी उद्धुप्र पार्टेक मल्टीपर्पज सोसायदी व पुळ्या महाफ्रबंधक सोसेन बोरुआ यांच्या सार्वाद्धर वांच्या सार्वेद्धर वांच्या सार्वेद्धर वांच्या सार्वेद्धर वांच्या सार्वेद्धर होनेगाव, शेणगाव, येक्स, धानोरा, व अंतुल या गावातील मार्योदिकांमध्ये आरोप्य समस्या लवकर शोधणे आणि प्रतिबंध करणे, वैयस्थिक आरोप्य सार्वाद्धर्यक रोग, व्यवस्थापन सार्विद्धर्यक रोग, व्यवस्थापन सार्वाद्धर्यक रोग, व्यवस्थापन सार्वाद्धर्यक्षर्यक्पर्यक्षर्यक्षर्यक्षरस्थरयक्षर्यक्षरस्थरक्

आवश्यक आहे व गावातील वाबती रोग हितिक्या ठक्षात थेगा हितिक्या ठक्षात थेगा हितिक्या ठक्षात थेगा शिवाराज कंपनीने व पहेल संख्येने गावातील जगारिकांसाठी मोचल आरोच्य तपाराणी शिविदाचे आयोजन करण्यात आले. शिवाराज वेद्यकीय अधिकारी डॉ. अनिव गावर यांने ३०० राणांची तपाराणी केली. कार्यक्रमाला उद्यादक म्हणून जानक अस्तुक गोयक महाम्रबंधक धारींबाल, दिनेण गावर मुख्य व्यवस्थापक, धीराज तर्धवार्व अस्तुक गोयक तर्धवार्व अस्तुक गोयक तर्धवार्व अस्तुक गोयक सहाम्रबंधक धारींबाल, दिनेण गावर मुख्य व्यवस्थापक धारींबाल तर्धवार्व अस्तुक गोयक तर्धवार्व कर्मणून होंने सिविद्यामार्थीलाल तर्धविवध्यावातील सरपंच यांची उपस्थित हों तर्दे सिविद्यामध्ये एक्ष्ण ३०० गावातील मारास्था जातील माणारास्था विचारामध्ये एक्णूण ३०० गावातील करण्यात आले। व औषधी वितरण करण्यात आले.

जनावरांची मोफत आरोग्य तपासणी

Nagpur Chandrapur-Today 17/09/2024 Page No. 3

लोकमत न्यूज नेटवर्क अंतुर्ली या गावंत मोकत आरोग्य अनीष नायर यांनी रुग्णांची तपासणी घुष्ट्सः : धारीवालः इन्फ्रास्ट्रक्चरः तपासणी शिबिताचे आयोजन करण्यतः केली. उदघाटन धारीवालचे महाप्रबंधक तिमिटेड, चंद्रपुर, पहेल मल्टीपर्यज आते होते. यात ३९० रुग्णांची तपासणी अतुत गोयल यांच्या हस्ते झाले. सोसायटी यांच्या संयुक्त विद्यानने केती. यावेळी मुख्य व्यवस्थापक दिनेश सोनेगाव, शेण्णाव, येरूर, धानोरा व व्यामध्ये वैद्यकीय अधिकारी डॉ. गाखर, धीरज ताटेवार उपस्थित होते.

> Helo Chandrapur Page No. 3 Sep 06, 2024 Powered by: erelego.com

Adolescent Girls Program

Objective:

To empower 300 adolescent girls through self-development initiatives, improving their nutrition and health status, and promoting awareness on health, menstrual hygiene, nutrition, sexual health, and the enhancement of home-based skills, vocational training, and life skills.

Activities Conducted:

1. Monthly Meetings:

Regular meetings were organized at nine villages (Morwa, Tadali, Sonegaon, Yerur, Shengaon, Anturla, Pandharkwada, Dhanora & Wadha) to provide a platform for adolescent girls to discuss their challenges and seek guidance. 300 adolescents were attended meeting monthly basis.

2. Career Guidance and Goal Setting Sessions:

Conducted a session focused on career guidance and goal setting, attended by 218 adolescent girls, facilitating informed decision-making about their future paths.

3. Menstrual Hygiene Sessions:

Organized two sessions on menstrual hygiene at Anturla and Shengaon, benefiting 43 adolescent girls by enhancing their understanding of personal hygiene practices.

4. Child Psychology Workshop:

Conducted a session on child psychology, attended by 256 adolescent girls, aimed at enhancing their understanding of emotional and psychological well-being.

- **5. Dance Classes:** Conducted dance classes at 9 villages.220 adolescent girls were participated.
- 6. **Self-defence classes**: Conducted self-defence classes at 9 villages. 180 adolescent girls were participated.
- 7. **Dance Competition:** Organized Dance competition at Yerur villages. 145 girls were participated.

8. Collaborative Meetings:

Held discussions with the Primary Health Center (PHC), Gram Panchayat, and local schools to align efforts for better support and resources for the girls.

9. Haemoglobin (HB) Camps:

Conducted HB camps in five villages (Morva, Sonegaon, Shengaon, Anturla, and Pandharkawda), benefiting 587 adolescent girls by assessing and addressing their nutritional health.

- 10. **Sports activities:** Conducted sports activities for adolescent girls in Pandharkwada & Shengaon villages. To encourage regular physical activity to improve overall health, reduce stress, and prevent lifestyle-related diseases.
- 11. **Life skills education:** Organized 4 sessions on life skill education at Shengaon, Pandharkwada, Tadali & Anturla. To foster self-awareness, self-esteem, and emotional intelligence, enabling individuals to understand and manage their emotions effectively. 318 adolescent participated in the session.

Outputs:

• Nutritional Support:

206 adolescent girls were identified with haemoglobin levels below 9 grams and received medication and dietary guidance under the supervision of a medical officer.

• Health Care Access:

Adolescent girls benefited from free treatment for skin conditions and routine illnesses, improving their overall health and well-being.

• Increased Awareness:

The sessions on menstrual hygiene significantly raised awareness among participants, empowering them to adopt better hygiene practices.

Boosted Confidence:

Participation in the Navratri festival contributed to increased confidence and self-esteem among the girls.

• Informed Career Choices:

Following the career guidance program, many girls began to choose fields aligned with their interests, fostering a sense of agency and direction for their futures.

Adolescent girls meeting

Health Card Distribution

Dance Class

Self Defense class

HB Checkup camp

Awareness on iron deficiency

Awareness on menstrual hygiene

Life skill education

PHC Visit

Skill development Program

Objective:

To empower village youth by providing technical skills that facilitate economic independence, specifically targeting youth from underprivileged communities.

Activities Conducted:

1. Collaborative Meetings:

Conducted a meeting with the Gram Panchayat to discuss opportunities for skill training, ensuring community involvement and support for the initiative.

2. Youth Engagement Session:

Organized a meeting focused on skill training, attended by 44 youth, which facilitated awareness and interest in various vocational training opportunities.

Outputs:

• Skill development:

7 youths are ready to attending the training.

Rural development Program

Objective:

To enhance the quality of life in rural areas by fostering sustainable economic growth, improving access to essential services, and empowering communities through participatory development initiatives.

Activities Conducted:

3. Collaborative Meetings:

The discussions held with the Gram Panchayat and local schools resulted in enhanced coordination and resource allocation, leading to improved support for villagers. This collaboration fostered a stronger partnership among community stakeholders, facilitating future development initiatives.

4. Donation of Cement Benches:

The donation of 20 cement benches in Shengaon, Pandharkwada, and Wadha villages significantly improved public spaces, providing residents with comfortable seating areas for community gatherings and enhancing the overall infrastructure.

5. Donation of Dead Body Freezer Box:

The donation of a dead body freezer box in Dhanora village addressed critical needs in the community, ensuring dignified handling of deceased individuals and supporting local healthcare facilities in managing mortality cases.

6. Donation of Sound System:

The provision of a sound system to the ZP School in Sonegaon enhanced communication during school events and activities, fostering a more engaging learning environment for students and encouraging community participation.

7. Construction of Shed:

The newly constructed shed in Morva Village serves as a multifunctional space for community gatherings, events, and storage, contributing to the enhancement of local infrastructure and community cohesion.

8. **Donation of Water Filter Plant:**

The installation of a water filter plant at Janta Vidyalay Tadali improved access to clean drinking water for students and staff, promoting better health and hygiene practices within the school community.

9. Playground Development:

The construction of a playground at ZP School in Yerur Village provided students with a safe and accessible recreational space, promoting physical activity, social interaction, and overall well-being among the youth.

GP Member Meeting

Donation of cement benches

Donation of sound system

Dead body freezer

Water filter plant donation

Annexure-10

Dhariwal Infrastructure Limited

CIN: U70109WB2006PLC111457 E-mail: dhariwalinfrastructure@rpsg.in

Ref: DIL/HEA/MPCB /24-25/00061

Date: 20.09.2024

To,
The Member Secretary,
Maharashtra Pollution Control Board,
Kalpataru Point, 3rd Floor,
Sion Matunga Road No.8,
Sion East,
Mumbai-400022.

Sub: Submission of Environmental Statement for the financial year ending 31st March 2024.

Dear Sir,

We have submitted online, the Annual Environment Statement for the financial year 2023-24 on EC MPCB Portal. Copy of the Environment Statement (Form-V) downloaded from EC MPCB portal along with annexures is attached herewith for your ready reference.

We hope you will find the same in order.

Thanking you,

Yours Faithfully, For **Dhariwal Infrastructure Limited**.

Authorized Signatory

CC:

 The Regional Officer, Maharashtra Pollution Control Board, 1st Floor, Udyog Bhawan, Chandrapur (Maharashtra).

2. Sub Regional Officer, Maharashtra Pollution Control Board, 1st Floor, Udyog Bhawan, Chandrapur (Maharashtra).

Maharashtra Pollution Control Board

महाराष्ट्र प्रदूषण नियंत्रण मंडळ

FORM V

(See Rule 14)

Environmental Audit Report for the financial Year ending the 31st March 2024

Unique Application Number

MPCB-ENVIRONMENT_STATEMENT-0000070524

Submitted Date

20-09-2024

PART A

Company Information

Company Name

Dhariwal Infrastructure Limited

Address

Dhariwal Infrastructure Limited, Plot No.C-6, C-7 & C-8, Tadali Growth Centre, MIDC Tadali, Chandrapur-442406, Maharashtra.

Plot no

C-6, C-7 & C-8

Capital Investment (In lakhs)

390450.00

Pincode 442406

Telephone Number

9561112006

Region

SRO-Chandrapur

Last Environmental statement

Consent Valid Upto

submitted online yes

2024-06-30

Application UAN number

UAN No. 0000098447

Taluka

Tadali Industrial area MIDC

Scale

LSI

Person Name Soumen Barua

Fax Number

07172237992

Industry Category

Red

Consent Number

Format 1.0/CAC/UAN No. MPCB-CONSENT-0000113131/CR-2110000172

Establishment Year

2014

Village

Tadali

Citv

Chandrapur

Designation Vice President

Email

dil.hse@rpsg.in

Industry Type

R48 Thermal Power Plants

Consent Issue Date

2021-10-05

Date of last environment statement submitted

Sep 21 2023 12:00:00:000AM

Industry Category Primary (STC Code) & Secondary (STC Code)

Product Information

Product Name Electricity Generation **Consent Quantity**

Actual Quantity

UOM

5256000

4421559.0

Mwh

By-product Information

By Product Name

0

Consent Quantity

Actual Quantity

UOM

0

0

Mwh

Part-B (Water & Raw Material Consumption)

1) Water Consumpt		Comment Co. III 1		National Committee	i	_
Water Consumption Process	for	Consent Quantity in 5280.00	-	Actual Quantity 1443.00	in m3/day	,
Cooling						
_		49440.00		24480.00		
Domestic		60.00	5	54.00		
All others		50.00	3	35.40		
Total		54830.00	2	26012.40		
2) Effluent Generati	ion in CMD / MLD					
Particulars			-	Actual Quantity		UOM
Trade Effluent		7776	5	5040	(CMD
Domestic Effluent		36	3	35.40	•	CMD
		otion (cubic meter of				
Process water per un Name of Products (I		D	Ouring the Previous	During the	current	UOM
	,	fi	inancial Year	Financial y		
Power Generation		2	.13	2.15		CMD
3) Raw Material Cor	nsumption (Consump	tion of				
raw material per un	it of product)					
Name of Raw Mater	ials	During the Previo	ous financial Durii year	_	inancial	UOM
Coal		0.661104	0.671			MT/MWH
LDO		0.000091947	0.000	0089321		
4) Fuel Consumption	n					
Fuel Name		Consent quantity	Actual Qua	ntity	UOI	М
Coal		4029600	2968183		MT/	A
LDO		4066	394.94		KL/A	A
Part-C						
	d to environment/un	it of output (Parameter as sp	ecified in the conse	ent issued)		
[A] Water Pollutants Detail (Duantity of	Concentration of Pollutants	Percentage	e of variation		
F	Pollutants discharged (kL/day) Quantity	discharged(Mg/Lit) Except PH,Temp,Colour Concentration	from presc	ribed with reasons	Standard	l Reason
Our Industry is ZLD	-	0	0		2100	0
[B] Air (Stack)						
Pollutants Detail	Quantity of Pollutants discharged (kL/o	Concentration of Pollu discharged(Mg/NM3) day)	variatio	n from ed standards		
			%variati			

32.49

34.65

Stack-1 (Particulate

Stack-2 (Particulate

Matter)

Matter)

829.17

1022.86

50

50

0

0

0

Part-D

II - HOMA IIHO COCC						
1) From Process Hazardous Waste Type	Total During Previous Financial year			Total During Current Financial year	иом	
5.1 Used or spent oil		8.22		29.4475	MT/A Nos./Y	
33.1 Empty barrels /containers chemicals /wastes	vith hazardous	32		60		
Other Hazardous Waste		3.270		4.82	MT/A	
35.2 Spent ion exchange resin	containing toxic metals	5	0		0.77	MT/A MT/A MT/A
33.2 Contaminated cotton rags	or other cleaning mate	erials	0.050		0.99	
5.2 Wastes or residues contain	ing oil		0		0.93	
2) From Pollution Control Fa Hazardous Waste Type	T	otal During Previous l		Fotal Duri /ear	ing Current Financial	иом
35.3 Chemical sludge from was	•		0.38			MT/A
Part-E						
SOLID WASTES 1) From Process	Total During Previ	ous Financial vear	Total Du	rina Curr	ent Financial year	UOM
SOLID WASTES	Total During Previo 961069	ous Financial year	Total Du 1023749	ring Curre	ent Financial year	UOM MT/A
SOLID WASTES 1) From Process Non Hazardous Waste Type	_	ous Financial year		ring Curre	ent Financial year	
SOLID WASTES 1) From Process Non Hazardous Waste Type FLY ASH BOTTOM ASH 2) From Pollution Control Fa	961069 104268 acilities	_	1023749 132505			MT/A
SOLID WASTES 1) From Process Non Hazardous Waste Type FLY ASH BOTTOM ASH	961069 104268 acilities	ous Financial year g Previous Financial y	1023749 132505		ent Financial year Current Financial year	MT/A
SOLID WASTES 1) From Process Non Hazardous Waste Type FLY ASH BOTTOM ASH 2) From Pollution Control Fa Non Hazardous Waste Type BIOLOGICAL SLUDGE 3) Quantity Recycled or Re-	961069 104268 acilities Total Durin	_	1023749 132505 year Tota			MT/A MT/A
SOLID WASTES 1) From Process Non Hazardous Waste Type FLY ASH BOTTOM ASH 2) From Pollution Control Fa Non Hazardous Waste Type BIOLOGICAL SLUDGE	961069 104268 acilities Total Durin	g Previous Financial y	1023749 132505 year Tota 0	l During (MT/A MT/A

Please specify the characteristics(in terms of concentration and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

1) Hazardous Waste

Type of Hazardous Waste Generated	Qty of Hazardous Waste	UOM	Concentration of Hazardous Waste
5.1 Used or spent oil	29.4475	MT/A	Well below the norms, Testing reports attached.
33.1 Empty barrels /containers /liners contaminated with hazardous chemicals /wastes	60	Nos./Y	Well below the norms
Other Hazardous Waste	4.82	MT/A	It is Glass Wool
35.3 Chemical sludge from waste water treatment	0.38	MT/A	Well below the norms

35.2 Spent ion exchange resin containing toxic metals	0.77	MT/A	Well below the norms
33.2 Contaminated cotton rags or other cleaning materials	0.99	MT/A	Well below the norms
5.2 Wastes or residues containing oil	0.93	MT/A	Well below the norms

2) Solid Waste

Type of Solid Waste Generated	Qty of Solid Waste	UOM	Concentration of Solid Waste
FLY ASH	1023749	MT/A	NA
BOTTOM ASH	132505	MT/A	NA

Part-G

Impact of the pollution Control measures taken on conservation of natural resources and consequently on the cost of production.

Description	Reduction in Water Consumption (M3/day)	Reduction in Fuel & Solvent Consumption (KL/day)	Reduction in Raw Material (Kg)	Reduction in Power Consumption (KWH)	Capital Investment(in Lacs)	Reduction in Maintenance(in Lacs)
2021-22	0	0	0	0	340.7	0
2022-23	116	1.16	88818597	4652403	285.25	0
2023-24	0	0	0	15917612.4	147.50	0

Part-H

Additional measures/investment proposal for environmental protection abatement of pollution, prevention of pollution.
[A] Investment made during the period of Environmental
Statement

Detail of measures for Environmental Protection	Environmental Protection Measures	Capital Investment (Lacks)
Construction of Roads and drains, Rain water harvesting project at technical building, RCC pit near JNT 2, DFDS systems in silo 1, Crusher house DE system, Ammonia dozing system, Miyawaki Forest devel	Expenditure made on Air pollution, Water pollution and Land pollution control measures, Greenery development and other Environmental protection measures.	147.50

[B] Investment Proposed for next Year

[2] mresement reposed for mext real			
Detail of measures for Environmental Protection	Environmental Protection Measures	Capital Investment (Lacks)	
Construction of roads & drains inside plant etc.	Expenditure proposed for on Air pollution, Water pollution and Land pollution control measures, Greenery development and other Environmental protection measures.	252.0	

Part-I

Any other particulars for improving the quality of the environment.

Particulars

Factory has already implemented all the necessary pollution control measures. Green belt development programme is a regular feature.

Name & Designation

SOUMEN BARUA, VICE PRESIDENT

IJAN No

MPCB-ENVIRONMENT_STATEMENT-0000070524

Submitted On:

20-09-2024